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The relationship between magneto-optical properties
and molecular chirality

Satoshi Wada1, Yuichi Kitagawa2, Takayuki Nakanishi2, Koji Fushimi2, Yasuhiro Morisaki3,4, Koji Fujita3,
Katsuaki Konishi5, Katsuhisa Tanaka3, Yoshiki Chujo3 and Yasuchika Hasegawa2

The chiral nonanuclear Tb(III) clusters [Tb9(sal-(R)-Bt)16(μ-OH)10]+[NO3]
− (Tb-(R)-Bt: sal-(R)-Bt= (R)-2-butyl salicylate) and [Tb9

(sal-(S)-Bt)16(μ-OH)10]+[NO3]
− (Tb-(S)-Bt: sal-(S)-Bt= (S)-2-butyl salicylate) were found to exhibit a unique magneto-optical

property: the Faraday effect. The clusters were composed of 9 Tb(III) ions bridged by 10 μ-OHs and 16 chiral salicylic acid

esters. The Faraday rotation angle of Tb-(R)-Bt was greater than that of Tb-(S)-Bt, indicating that the Faraday effect was affected

by the chirality of the Tb(III) clusters. The chiroptical properties of the Tb(III) clusters were estimated using circular dichroism

and circularly polarized luminescence. In this study, a new finding concerning chiral magneto-optical properties was

investigated.
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INTRODUCTION

The Faraday effect, a magneto-optical property, has received signifi-
cant attention with regard to applications of magneto-optical materi-
als. This effect causes the rotation of polarization by a material as the
result of the application of an external magnetic field.1 The degree of
rotation is linearly proportional to the component of the magnetic
field in the direction of propagation. The Faraday effect originates
from the Zeeman splitting of electronic states based on the angular
momentum of electrons in the material. Inorganic lanthanide
compounds such as Tb(III)-doped borosilicate glasses and Tb(III)
garnet ceramics exhibit large Faraday effects because of the large
angular momentum of the 4f electron, and such materials have been
used to construct optical isolators employed in optical communication
systems.2–5

We recently described nonanuclear Tb(III) clusters coordinated
with salicylate ligands that are a new type of lanthanide material
exhibiting a large Faraday effect.6 These clusters are composed of 9 Tb
(III) ions bridged by 10 μ-OHs and 16 salicylic acid esters as organic
ligands. The Faraday rotation angles of the clusters in the visible region
are much larger than those of Tb glasses. We expect the clusters to be
applied to next-generation optical communication systems. We also
identified a further unique property of these clusters: the rotation
angles were different depending on the organic ligands. This finding
has the possibility to lead to new molecular designs for Faraday effect
materials based on the type of the organic ligands.
In the present study, we focused on introducing chiral ligands to the

Tb(III) cluster to maximize the unique characteristics of these

inorganic–organic hybrid complexes. Lanthanide complexes contain-
ing chiral ligands show significant circular dichroism (CD) and
circularly polarized luminescence (CPL) resulting from the differing
absorption or luminescent intensities between left- and right-handed
circularly polarized light.7 These phenomena are derived from the
chirality of the complexes; thus, their origin is markedly different from
that of the Faraday effect.1,8 The dissymmetry factors gCD and gCPL
represent the magnitudes of the CD and CPL intensities, respectively,
and the gCD and gCPL of the chiral lanthanide complexes are several
hundred times larger than those of typical chiral organic
molecules.8–22 These larger dissymmetry factors are attributed to the
large transition magnetic dipole moment of the lanthanide ion that
shows opposing vectors depending on chirality. This moment is based
on the angular momentum of electrons accompanying 4f–4f transi-
tions. In CD and CPL studies, Richardson9 established selection rules
based on the S, L and J angular momentum quantum numbers of
lanthanide 4f electron states, both experimentally and theoretically.
Based on these rules, Muller and colleagues13 reported the largest gCPL
value (41.0) for a Eu(III) complex with chiral camphor-derivative
ligands. As a general trend, Tb(III) complexes are also classified into a
group having a large gCPL among the lanthanide complexes,22

expecting the large transition magnetic dipole moments of several
transitions in the Tb(III) clusters.
For the first time, in this work, we introduced chiral ligands into Tb

(III) clusters to investigate the effect of large transition magnetic dipole
moments on the Faraday rotation. The chiral Tb(III) clusters [Tb9(sal-
(R)-Bt)16(μ-OH)10]

+[NO3]
− (Tb-(R)-Bt: sal-(R)-Bt= (R)-2-butyl
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salicylate) and [Tb9(sal-(S)-Bt)16(μ-OH)10]
+[NO3]

− (Tb-(S)-Bt: sal-
(S)-Bt= (S)-2-butyl salicylate) were synthesized by the complexation
of Tb(NO3)·6H2O with chiral organic ligands in methanol (CH3OH)
at 40 °C (Figure 1). The structures and chiroptical properties of these
clusters were characterized using X-ray diffraction, CD and CPL
measurements. We also performed Faraday effect measurements for
these chiral Tb(III) clusters in poly(methyl methacrylate) (PMMA)
films. The results showed that the Faraday rotation angles of these
clusters were affected by their chirality. This study is the first report of
a relationship between the Faraday effect and molecular chirality,
providing new insights into the design of magneto-optical materials
and also potentially opening up a novel field of chiral science.

MATERIALS AND METHODS

Materials
Salicylic acid (C6H4(OH)COOH), N,N-dimethyl-4-aminopyridine (DMAP,
C7H10N2), PMMA ((C5H8O2)n, Lot PDF4279), CH3OH, and chloroform
(CHCl3) were purchased from Wako Pure Chemical Industries, Ltd (Osaka,
Japan). (R)-(–)-2-butanol (C4H9OH, 499.0%), (S)-(+)-2-butanol (C4H9OH,
498.0%) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC·HCl, C8H17N3·HCl) were purchased from Tokyo Chemical Industry Co.,
Ltd (Tokyo, Japan). Terbium(III) nitrate hexahydrate (Tb(NO3)3·6H2O) and
triethylamine (Et3N, (C2H5)3N) were purchased from Kanto Chemical Co., Inc
(Tokyo, Japan).

Apparatus
Proton nuclear magnetic resonance (1H-NMR) spectra were recorded in CDCl3
on an auto-NMR JEOL ECS 400 MHz spectrometer (JEOL, Tokyo, Japan);
CHCl3 (δH= 7.26 p.p.m.) was used as an internal reference. Fast atom
bombardment–mass spectrometry was performed using a JEOL JMS-700TZ
spectrometer. Elemental analyses were performed using a J-SCIENCE MICRO
CORDER JM10 system (Kyoto, Japan). Infrared spectra were recorded on a
JASCO FT/IR-350 spectrometer (Tokyo, Japan). X-ray diffraction data
were obtained using a RIGAKU SmartLab X-ray diffractometer (Tokyo, Japan).
Photoluminescence (PL) spectra were measured using a Horiba FluoroLog3
spectrofluorometer (Kyoto, Japan, excitation wavelength= 380 nm). Lumines-
cence quantum yields were measured using an JASCO FP-6300

spectrofluorometer with an integration sphere. The luminescence lifetimes
were measured using the third harmonic (355 nm) of a Qswitched Nd:YAG
laser. The electronic absorption, CD and CPL spectra were measured using a
JASCO V-670 spectrophotometer, JASCO J-720 spectropolarimeter and JASCO
CPL-200 spectrofluoropolarimeter (excitation wavelength= 380 nm), respec-
tively. The quantitative elemental analyses were performed using an inductively
coupled plasma atomic emission spectroscopy (ICP-AES, SHIMADZU ICPE-
9000, Kyoto, Japan) to determine the concentration of the Tb(III) ion in
PMMA films for the Faraday rotation measurements. The Faraday effect
measurements were performed using a JASCO Model K-250
spectrophotometer.

Synthesis of (R/S)-2-butyl salicylate [Sal-(R/S)-Bt]
Salicylic acid (2.0 g, 14.5 mmol), (R/S)-(− /+)-2-butanol (1.08 g, 14.5 mmol),
EDC·HCl (2.78 g, 14.5 mmol) and DMAP (0.177 g, 1.45 mmol) were added to
CHCl3 (40 ml). The mixture was stirred at room temperature for 5 h under Ar,
washed with HCl aq. (2×30 ml) and NaHCO3 aq. (2× 30 ml) and distilled
H2O (2× 30 ml). The organic layer was separated and dried with MgSO4, and
the solvent was evaporated. The residue was chromatographed on silica gel
eluting with ethyl acetate/hexane (10/90).
[Sal-(R)-Bt]. Yield: 10.0%. 1H-NMR (400 MHz, CDCl3): δ/p.p.m.= 10.9 (s,

1H, -OH), 7.85 (d, 1H, J= 8 Hz, Ar), 7.45 (t, 1H, J= 8 Hz, Ar), 6.97 (d, 1H,
J= 8 Hz, Ar), 6.88 (t, 1H, J= 8 Hz, Ar), 5.08–5.18 (m, 1H, -2CH), 1.64–1.84
(m, 2H, -3CH2), 1.36 (d, 3H, J= 6 Hz, -1CH3), 0.98 (t, 3H, J= 8 Hz, -4CH3).
Elemental analysis: Calculated for C11H14O3: C, 68.02%, H, 7.27%. Measured:
C, 68.13%, H, 7.52%.
[Sal-(S)-Bt]. Yield: 9.7%. 1H-NMR (400 MHz, CDCl3): δ/p.p.m.= 10.9 (s,

1H, -OH), 7.85 (d, 1H, J= 8 Hz, Ar), 7.45 (t, 1H, J= 8 Hz, Ar), 6.97 (d, 1H,
J= 8 Hz, Ar), 6.88 (t, 1H, J= 8 Hz, Ar), 5.08–5.18 (m, 1H, -2CH), 1.64–1.84
(m, 2H, -3CH2), 1.36 (d, 3H, J= 6 Hz, -1CH3), 0.98 (t, 3H, J= 8 Hz, -4CH3).
Elemental analysis: Calculated for C11H14O3: C, 68.02%, H, 7.27%. Measured:
C, 68.15%, H, 7.49%.

Synthesis of [Tb9(sal-(R/S)-Bt)16(μ-OH)10]+[NO3]− ([Tb-(R/S)-Bt])
(R/S)-2-butyl salicylate (0.20 g, 1.0 mmol) was dissolved in CH3OH, and Et3N
(0.174 g, 1.72 mmol) was added to this solution with stirring at 40 °C.
Tb(NO3)3·6H2O (0.26 g, 0.58 mmol) in CH3OH was added dropwise to this
solution with further stirring for 20 min.6,23 A white powder, Tb-(R/S)-Bt, was
obtained.
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Figure 1 Synthetic scheme of a 2-butyl salicylate ligand and a nonanuclear Tb(III) cluster.
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[Tb-(R)-Bt]. Selected IR (KBr, cm− 1): 1680 (-C=O), 2930 (-CH2-), 2960
(-CH3). Elemental analysis: Calculated for C176H218NO61Tb9: C, 44.47%, H,
4.62%, N, 0.29%. Measured: C, 44.12%, H, 4.55%, N, o0.30%. Fast atom
bombardment–mass spectrometry: m/z Calculated for C176H218O58Tb9: [M-
NO3]

+, 4691.75; Measured, 4691.79.
[Tb-(S)-Bt]. Selected IR (KBr, cm− 1): 1680 (-C=O), 2930 (-CH2-), 2960

(-CH3). Elemental analysis: Calculated for C176H218NO61Tb9: C, 44.47%, H,
4.62%, N, 0.29%. Measured: C, 44.50%, H, 4.78%, N, 0.31%. Fast atom
bombardment–mass spectrometry: m/z Calculated for C176H218O58Tb9: [M-
NO3]

+, 4691.75; Measured, 4691.76.

Spectral measurements
The electronic absorption and CD spectra of Tb-(R)-Bt (2.0× 10− 5 M) and Tb-
(S)-Bt (2.0 × 10− 5 M) were measured in CH3OH at room temperature. The
photoluminescence, CPL spectra, luminescence quantum yields and emission
lifetimes (1.0× 10− 4 M) were measured in CHCl3 at room temperature.

Faraday rotation measurements
The Tb(III) clusters (95 mg) obtained were added to CHCl3 (1 ml). Then, the
solution (0.2 ml) was added to PMMA (2.8 g) dissolved in CHCl3 (10 ml).6

PMMA films were prepared on glass substrates using a casting method. The
thickness of the PMMA film was ∼ 1.2 mm, and the transmittance was 490%
in the 400–800 nm region. The external magnetic field was 15 kOe.

RESULTS AND DISCUSSION

Electronic states and chiroptical properties of the Tb(III) clusters
The Tb(III) clusters Tb-(R)-Bt and Tb-(S)-Bt were composed of 9 Tb
(III) ions bridged by 10 μ-OHs and 16 chiral salicylate ligands. These
structures were identified by infrared spectroscopy, fast atom bom-
bardment–mass spectrometry and elemental analysis. X-ray diffraction
patterns also demonstrated that the peaks generated by Tb-(R)-Bt
were consistent with those produced by Tb-(S)-Bt (Supplementary
Figure S1).
The absorption spectra of the Tb(III) cluster and the ligand are

shown in Figure 2a. Intense absorption bands were observed in both
Tb-(R)-Bt and Tb-(S)-Bt at ∼ 340 nm (εmax≈60 000 cm− 1 M− 1)
because of the π–π* transition of the salicylate ligands (Figure 2a,
red line). The spectrum of the Tb(III) clusters was red shifted and
broadened compared with that of the ligands (Figure 2a, black line).
This red shift is primarily attributed to destabilization of the highest
occupied molecular orbital level as a result of the complexation.24 The
4f–4f transition of the Tb(III) ions (expected at 488 nm) was not
observed because this transition is essentially forbidden by the Laporte
rule (εmaxo1 cm− 1 M− 1).25

These clusters exhibited bisignate CD bands because of the π–π*
transitions of the salicylate ligands (Figure 2b), the signs of which were
dependent on the asymmetric centers of the organic ligands. These
bisignate spectra were consistent with the absorption maximum peak
(335 nm) and shoulder peak (365 nm), respectively, that was attrib-
uted to an exciton coupling.8,26–29 These results indicate that
intramolecular interactions might occur between neighboring chiral
ligands in the Tb(III) clusters. The band of Tb(III) clusters is not
related to CT transition because the Tb(III) ion shows high reduction
potential, and its ligand-to-metal charge transfer transition state is
located at a higher energy (460 000 cm− 1). Because the electronic
state of the Tb(III) ion depends on the coordination geometry formed
by the ligands,25 the intramolecular interactions in the Tb(III) clusters
affect the photophysical properties based on the transitions of the Tb
(III) ions.
To assess the differences between the electronic states of Tb-(R)-Bt

and Tb-(S)-Bt, we carried out high-resolution photoluminescence
measurements. The photoluminescence spectra of the Tb(III) clusters

in CHCl3 showed four sharp emission bands in the region of
450–650 nm that were attributed to the 5D4→ 7FJ (J= 6, 5, 4, 3)
transitions of the Tb(III) ions (Figure 3 and Supplementary
Figure S2).25 In contrast to the absorption spectra, emission bands
resulting from the π–π* transitions of the ligands were not observed.
This effect was attributed to the intersystem crossing of the ligand
from the excited singlet state to the excited triplet state promoted by
the spin orbit coupling of the Tb(III) ions. The crystal field splitting
(Stark splitting) of Tb-(R)-Bt was consistent with that of Tb-(S)-Bt
(Figure 3, inset). In time-resolved spectroscopy, the luminescence
decays (5D4→ 7F5 transition) of the Tb(III) clusters were single
exponential (Supplementary Figure S3). These results demonstrate
that Tb-(R)-Bt and Tb-(S)-Bt form mirror image stereoisomers in
solution, and these clusters are thus expected to show identical
photophysical properties, with the exception of their chiroptical
characteristics.
We also performed CPL measurements for these clusters (Figure 4a

and b), and the resulting signals were observed to correspond to the
transitions of the Tb(III) ions. The observed photophysical properties
are summarized in Table 1. Within the experimental error, the clusters
had the same luminescence quantum yield, Φπ− π*, and luminescence
lifetime, τobs, although their gCPL signs were inverted. The largest gCPL

Figure 2 (a) Ultraviolet–visible (UV-vis) and (b) circular dichroism (CD)
spectra of Sal-(R)-Bt (black line), Tb-(R)-Bt (red line) and Tb-(S)-Bt (blue
line) in CH3OH (2.0×10−5 M).

Figure 3 High-resolution photoluminescence (PL) spectra of Tb-(R)-Bt (red
line) and Tb-(S)-Bt (blue line) in CHCl3 (1.0×10−4 M).
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values were observed at the 5D4→ 7F5 transitions (gCPL=± 0.04) that
were on the same order of magnitude as previously reported for Tb
(III) complexes.12,16,22,24 The large gCPL consequently leads to a large
gCD,

9 and this is expected to give large transition magnetic dipole
moments around the Faraday-active wavelength based on the 4f–4f
absorption.

The Faraday effect of the chiral Tb(III) clusters
The wavelength dependence of the Faraday effect was measured using
PMMA films containing Tb-(R)-Bt or Tb-(S)-Bt. The Faraday effect
was determined based on the Verdet constant, V, as defined in the
following equation:1

V ¼ y=Hl ð1Þ
where θ, H and l represent the Faraday rotation angle, the external
magnetic field and the thickness of the film, respectively. In these
experimental trials, we determined the concentration C of the Tb(III)
ions in the film using inductively coupled plasma atomic emission
spectroscopy. Based on previous work,6 we subsequently calculated the
Verdet constant, Vc, normalized by the concentration of Tb(III) ions
in the film, as follows:

VC ¼ y=HlC: ð2Þ
The measured rotation angle consists of a magnetic rotation, θF, due to
the Faraday effect and a natural rotation, θCD, due to chirality. To
extract θCD from the total rotational angle, two rotational angles, θ+

and θ
−

, were measured by applying an external magnetic field parallel
(+) and antiparallel (− ) to the direction of light propagation,
respectively (Supplementary Figure S4). These parameters are repre-
sented as follows:

yþ ¼ yF þ yCD ð3aÞ

y� ¼ �yF þ yCD ð3bÞ
The Faraday rotation angle was obtained from Equations (3a and b).

y ¼ yF ¼ 1

2
ðyþ � y�Þ ð4Þ

The Faraday rotation spectra and the differential spectrum, ΔVC, are
shown in Figure 5a and b. In Figure 5a, negative Faraday rotation
angles are observed at ∼450 nm. The Verdet constant of the Tb-(R)-Bt
(VC,max(446 nm)=− 5.2 × 10− 4 deg Oe− 1 cm− 1 M− 1) was larger than
that of the Tb-(S)-Bt (VC, max(446 nm)=− 3.4× 10− 4 deg
Oe− 1 cm− 1 M− 1). This result represents the first observation
of a Faraday effect that is dependent on the chirality of the
clusters.
Generally, the Faraday rotation angle can be expressed as the sum of

three terms resulting from three electronic conditions, as follows:1,30,31

yFpf 1Aþ f 2 Bþ C

kT

� �
ð5Þ

Here, f1 and f2 are functions that provide an explicit description of the
shape of the Faraday effect. The Faraday A and C terms primarily
reflect the degeneracy of the excited and the ground states, respec-
tively, whereas the Faraday B term is related to the mixing of the
ground and two or more excited states by the magnetic field. In
general, the Faraday C term is larger than the Faraday A and B terms.31

The wavelengths observed in the Faraday effect measurements are
associated with several 4f-4f transitions, such as 7F6→ 5D4 (488 nm),
7F6→ 5D3 (380 nm)32 and the broad 4f–5d (below 300 nm)33 transi-
tions of the Tb(III) ions and the S0→T1 transitions (470 nm) of the
ligands.34 The degenerate ground state is not formed by diamagnetic
organic molecules such as the ligands, but rather by the paramagnetic
Tb(III) ions depending on the total angular momentum, J. In this
case, the 7F6 (J= 6) state of the Tb(III) ions can degenerate into 13
states (2J+1). For this reason, the observed signals were primarily due
to the transitions of the Tb(III) ions.
The photophysical properties of the Tb(III) ions depend on their

coordination geometry. We have previously reported that the Faraday
rotation angles of nonanuclear Tb(III) cluster derivatives were
changed by altering a substituent in the ligands.6 This effect results
not from changing the electronic state of the ligands, but rather from
varying the geometry around the Tb(III) ions of the cluster by using
different ester substituents in the ligands.35 We also demonstrated that
the shape of the Stark splitting of Tb-(R)-Bt was consistent with that
of Tb-(S)-Bt based on their geometries (Figure 3 and Supplementary
Figure S2), suggesting that difference in the Faraday rotation angle is
not derived from configuration interactions between the 4f–4f and 4f–
5d transitions. These aspects of the photophysical behavior indicate
that the difference between the Faraday rotation angles observed in
our experimental work might be attributable to the large transition
magnetic dipole moments of Tb-(R)-Bt and Tb-(S)-Bt. The sign of the
transition magnetic dipole moments in the Faraday B term inverts
depending on the chirality,1 indicating that this term might be affected
by interactions between the 4f–4f (7F6→ 5D4) transition and the other
4f–4f transitions such as 7F6→ 5D3 or the 4f–5d transition.1 The
chirality-induced magneto-optical effect observed in our work is a

Figure 4 (a) Photoluminescence (PL) and (b) circularly polarized
luminescence (CPL) spectra of Tb-(R)-Bt (red line) and Tb-(S)-Bt (blue line)
in CHCl3 (1.0×10−4 M).

Table 1 Luminescence quantum yields (Φπ−π*), luminescence

lifetimes (τobs) and dissymmetry factors gCPL of Tb(III) clusters

gCPL

Complex Φπ− π*/% τobs/ms 5D4→ 7F6 5D4→ 7F5 5D4→ 7F4 5D4→ 7F3

Tb-(R)-Bt 14 1.3 +0.008 +0.04 +0.005 −0.02

Tb-(S)-Bt 15 1.3 −0.01 −0.04 −0.004 +0.03
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different phenomenon from magneto-chiral dichroism (that is, the
absorption dependence of a chiral molecule on the direction of a
magnetic field).36–38 Although it is difficult to determine the
exact origin of the phenomenon at this stage, this is the first
report that Faraday rotation can be affected by chiroptical properties.
This result could be a key factor in the design of new materials
exhibiting the Faraday effect and may also broaden the field of chiral
science.

CONCLUSION

In the present study, we assessed the chiroptical and magneto-
optical properties of novel chiral nonanuclear Tb(III) clusters
that are composed of 9 Tb(III) ions and 16 chiral 2-butyl salicylate
ligands. Faraday effect measurements indicated that the Faraday
rotation angles depended on the chirality of the ligands in the
Tb(III) clusters. These results provide significant new insight
regarding the interrelation between chirality and the Faraday effect.
To clarify this mechanism and develop novel magneto-optical
materials exhibiting pronounced Faraday rotations, the study of the
Faraday effect associated with chiral clusters with large gCD values is
now in progress.
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