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Deletion of 11 Amino Acids in 
Tuberin Associated with Severe 
Tuberous Sclerosis Phenotypes: 
Evidence for a New Essential 
Domain in the First Third of the 
Protein 

Abstract 
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder display
ing a large spectrum of symptoms. Linkage studies have shown two loci, TSC 1 
in 9q34 and TSC2 in 16p13.3, to be involved in the disease. The TSC2 gene, 
composed of 41 exons, has been isolated and is shown to encode a protein, 
tuberin, from a 5.5-kb transcript. Mutation screening for both clinical diagno
sis and identification of functional domains within the tuberin is in progress. 
In this study we identify a 33-bp in-frame deletion (1462del33) in the mRNA 
which segregates in two unrelated French families with severe TSC pheno
types. The corresponding 11 amino acids deletion (aa 482-492) is shown to 
result from two different splice site mutations at exon 14 and, when compared 
with the position of two previously described missense mutations, indicates a 
novel functionally important region of the protein. 

Tuberous sclerosis complex (TSC), also known as 
Bourneville's disease, is an autosomal dominant disorder 
with a prevalence of at least 1110,000 in the general popu
lation. About 60% of the cases seem to be sporadic [1]. 
The disease is characterized by the development of benign 
tumors (hamartomas) in several organs. These various 
lesions present a wide inter- and intrafamilial phenotypic 
variability [2-5]. Nevertheless, the criteria defined by 
Gomez [3] and Roach et al. [6] allow a reliable clinical 
diagnosis. 

Linkage studies have revealed a genetic heterogeneity 
with at least two loci: TSC1 in 9q34 [7-11] and TSC2 in 
16p13.3 [12], with apparently indistinguishable corre
sponding phenotypes. Virtually all the affected families 
can be linked to either chromosome 9 or 16 loci, in 
approximately equal numbers [13, 14]. The TSC1 gene is 
located between markers D9S 149 and A6 in a region 
spanning 1.5 Mb [ 15], but has not been cloned. The TSC2 
gene was isolated by positional cloning in 1993 [16]. The 
corresponding transcript is 5.5 kb long, spans nearly 43 kb 
of genomic DNA and comprises 41 exons [ 17]. Numerous 
isoforms resulting from alternative splicing have been 
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identified in human, rat and mouse tissues [17-20]. 
Northern blot analysis from human cell cultures has dem
onstrated that TSC2 mRNA is widely expressed in brain, 
kidney, skin, liver, adrenal gland, colon and white blood 
cells [16]. RT-PCR studies with embryonic rodent tissues 
reveal particularly high levels of the TSC2 mRNA in the 
developing CNS [21]. Tuberin, the TSC2 gene product, 
has been immunohistochemically detected in the adult 
and developing mouse nervous system [22]. The exact 
function of tuberin has not been elucidated, but in vitro 
studies indicate that the C-terminal part of the protein 
specifically stimulates the intrinsic GTPase activity of 
Rap1a (GAP domain) [23] and that the tuberin is colocal
ized in the Golgi apparatus with Rap1a [24]. Another 
study reports the presence of putative transactivation 
domains in the carboxyl terminus of the protein (AD 1 
and AD2) [25], although this result needs to be con
firmed. 

The analysis of various TSC lesions has shown loss of 
heterozygosity for both loci 9q34 and 16p13.3 [26-31] 
suggesting a tumor suppressor activity for the TSC1 and 
TSC2 gene products, in accordance with the two-hit 
hypothesis proposed by Knudson [32]. This hypothesis is 
supported by the development in the Eker rat of renal cell 
carcinoma due to lack ofTSC2 activity [33, 34]. Further
more the neoplastic phenotype of these cancerous cells is 
suppressed in vitro by transcomplementation with an 
active TSC2 product [35, 36]. 

According to the tumor suppressor gene hypothesis, 
the mutations of the TSC2 gene in affected individuals 
are generally interpreted as causing loss of function. The 
observation of huge germline deletions [16, 37-39] and 
nonsense mutations or frameshift deletions leading to 
truncated proteins which do not express normal activity 
[ 40-44] confirmed this hypothesis. A small number of 
missense mutations and in-frame deletions have been 
detected. 

In this study we report an in-frame deletion of 33 bp in 
the coding part of the TSC2 mRNA segregating with the 
disease in two unrelated families with TSC. This deletion 
is generated by variant splicing mutations at the acceptor 
splice site of exon 14. 

Materials and Methods 

Patients and Nucleic Acids Extraction 
Eighty unrelated French patients and 163 unaffected Caucasian 

controls were studied. Clinical diagnoses were established according 
to the criteria defined by Gomez [3] and Roach eta!. [6]. A lympho
blastoid cell line was established for each individual by transforma-
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tion with Epstein-Barr virus. From those families in which a muta
tion was detected, a second blood sample was taken and used for 
analysis without being immortalized. 

Total RNA was isolated either from blood or cell lines using the 
RNA-B kit from Bioprobe. Genomic DNA was extracted from blood 
as previously described [ 45]. 

DGGE Analysis on mRNA 
MELT 87 and SQHTX programs kindly provided by Dr L.S. Ler

man [see 46, 4 7] and a Sun Spare station IPX were used for computer 
analysis. The graphical interface was provided by GNUPLOT soft
ware. 

cDNAs were synthesized as follows: 600 ng of total RNA was 
denatured at 65 oc for 2 min with 250 pmol of random hexamers 
(Pharmacia) in a total volume of 5 11!. Then 15 111 of RT reaction 
buffer was added and the mixture was incubated for 30 min at 42 o C 
and then for 30 min at 46 o C. RT reaction buffer contained 1 x PCR 
buffer, 5 rnMMgC12, 1 rnMDTT, 500 )1M dNTP, 8 units ofRNasin 
and 3 units of AMV RT (PCR buffer and enzymes were supplied by 
Promega Corporation). 

PCR amplifications were performed using 5 111 of eDNA mixture 
with a hot-start procedure in a final volume of 50 111 containing 10 
mM Tris-HCl (pH = 8.3 at 20 o C), 50 mM KCl, 100 jlg/ml gelatine, 
1.5 rnMMgCh, 200 )1M dNTP, 15 pM of each primer and 0.4 unit of 
Taq DNA polymerase (ATGC). Target DNA were amplified in a 
PTClOO thermal cycler (MJ Research Inc.) with a first denaturation 
at 9 3 o C for 5 min followed by 35 cycles of 9 3 o C for 60 s, 55 o C for 
60s and 72 o C for 90s with a final 5-min extension at 72 o C. The 
forward and reverse primer sequences were respectively 5' gee cgc egg 
ccc gac ccc cgc gcg tee ggc gee egG ATT CTT CAG GAG CGA GT 3' 
(lower case letters correspond to the 35 bp GC-clamp previously used 
by Fanen eta!. [48]) and 5' GGC AGG GTG TAG CTG TGC TTG 
T3'. 

The size and specificity ofPCR products were checked by electro
phoresis on a 2% agarose gel (1% standard agarose, Eurobio; 1% 
metaphore agarose, FMC). 

Fifteen microliters of each PCR product were run for 14 hat 80 V 
on a 6.5% gel containing a linear gradient (30-60%) of denaturing 
solution in TAEXl buffer(pH=7.5 at20°C)(100%denaturingsolu
tion contains 6.5% acrylamide I bisacrylamide 37.5:1, 7 M urea and 
40% formamide). All the runs were performed at 65 o C with the de
naturing gradient gel electrophoresis system from CBS Scientific 
(DGGE 4000). 

Mutation Analysis on Genomic DNA 
RT-PCR products were subcloned into the pGEM-T vector 

(Promega). Insert DNA were prepared with the Miniprep kit (Qia
gen) and sequenced with the M 13 primers and the Sequenase 
sequencing kit (USB - Amersham). 

Exon 14 was amplified from genomic DNA by PCR under the 
conditions described above with a first denaturation at 93 o C for 
5 min followed by 35 cycles of93 o C for 40 s, 64 o C for 45 sand 72 o C 
for 90 s with a final 5-min extension at 72 o C. The forward and 
reverse primer sequences were respectively 5' TCG CGC TCA GCG 
GTG CTG T 3' and 5' GAG CAT TGC TGC CCA CGG A 3' (cho
sen from the data published by Maheshwar eta!. [17]). 

The PCR products were then sequenced without any purification 
using the dsDNA Sequencing Kit (USB- Amersham). 

SSCP analysis was performed on exon 14 PCR products accord
ing to the procedure of Orita et a!. [ 49] with minor modifications. 

Eur J Hum Genet 1997;5:280-287 281 



Fig. 1. DGGE analysis ofTSC patients (1, 3, 6, 8, 9) and TSC
unaffected controls (2, 4, 5, 7, 1 0). ( 1) B-17, (2) con troll, (3) B-13, ( 4) 
control2, (5) control3, (6) B-95, (7) control4, (8) B-42, (9) B-55, (10) 
controlS. 

Table 1. Summary ofTSC patient clinical findings 

B-17 B-95 

II-I III-2 1-1 11-1 

Angiofibroma + + + + 
Ungual fibroma + + + + 
Hypomelanic macules + + + 
Shagreen patch + + + 
Seizures + + + + 
Mental retardation + + 
CT + + + + 
MRI + + + 
Eye + + 
Renal abnormalities + + + 

Amplification was carried out as described above with addition of 
0.1Jll a33P-dATP (3,000 Ci/mmol, Amersham). 10111 of the labelled 
amplified DNA was diluted in 10111 of formamide, denatured for 
10 min at 9 5 o C and placed immediately on ice prior to loading. The 
samples were run for 18 hat 4 Won a 0.5X MDE gel (AT-Biochem) 
in TBE 0.6X buffer at room temperature. The gels were dried and 
then exposed to Kodak Biomax MS film overnight at room tempera
ture. 

Results 

DGGE Analysis 
Computer modelling of the TSC2 eDNA led us to 

divide the sequence into 13 fragments suitable for 
DGGE analysis (data not shown). In the present study, 
we focused on domain number 6 (nucleotides 1370-
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1832). mRNA samples prepared from lymphoblastoid 
cell lines of 80 independent French TSC patients and 5 
normal controls were amplified as described in Materials 
and Methods. The RT-PCR products were subjected to 
electrophoresis on denaturing gradient gels, and three 
different patterns were observed (fig. 1). As expected, 4 
of the unaffected controls are characterized by the pres
ence of one band (line 4, 5, 7, 10) while control 1 dis
plays two bands (line 2); this additional band is also 
present in 3 TSC patients (line 3, 8 and 9). Interestingly 
a new additional band is observed for 2 TSC patients 
(line 1 and 6) but not for any of the other 78 patients or 
the 5 controls. 

Analysis of Polymorphism and Mutations in the TSC2 
mRNA 
Anomalies were identified by direct sequencing ofRT

PCR products amplified for the DGGE analysis. TSC 
patients corresponding to lines 3, 8 and 9 as well as con
trol 1 (line 2) all carried a c~ T transition at position 
1596 consistent with the polymorphism described by Wil
son et al. [ 43]. Individuals 1 and 6 (respectively individual 
III-2 of family B-17 and 11-1 of family B-95; see fig. 3) 
were more complex to analyze by direct sequencing but 
present new transcripts differing from the normal one at 
the level of nucleotide 1462 for both individuals (data not 
shown). In order to analyze separately the two mRNA 
species, R T- PCR products corresponding to these cases 
were subcloned and several plasmid clones of each prod
uct were sequenced. Under this condition it was possible 
to detect in both patients the normal mRNA (7112 and 
6111 clones for respectively individual! and 6) as well as a 
new mRNA form with an in-frame deletion of 33 bp rang
ing from nucleotides 1462 to 1494 (5/12 and 5/11 clones 
for individuals 1 and 6) (fig. 2A). Going back to the 
sequence of the previous RT-PCR product, we confirmed 
that the variants detected on the cloned products corre
spond to the mutant allele which is expressed at a level 
comparable with the normal one. Both patients are se
verely affected and present very similar phenotypes (ta
ble 1 ). 

Analysis of Mutations in the Genomic DNA 
Southern blotting with 4B2 and s49 probes [16] using 

three different enzymatic digests (EcoR I, Hind III, Taq I) 
produced no evidence of genomic rearrangement for indi
viduals 1 and 6 (data not shown). Taking into account 
that exon 14 starts at nucleotide 1462, we amplified this 
exon with PCR primers chosen on flanking intronic 
sequences. As the PCR products for both families were of 
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Exon 14 1 

Exon 13 

Exonl4 

(deleted) 

A~--------------------------------------~ 

the expected length (data not shown), no small deletions 
of the genomic DNA have been detected. However direct 
sequencing of the PCR products revealed heteroallelic 
variation at the acceptor splice site of exon 14 for both 
families. This result confirms that two alleles are present 
in the genomic DNA of the patients, and that a large dele
tion of TSC2 is not germinally transmitted in these fami
lies. In the case of family B-17, a G ~ T transversion abol
ished the AG consensus sequence required for normal 
splicing [50]. In family B-95, an A~G transition similar
ly abolishing the acceptor splice site was identified 
(fig. 2B). 

We then examined whether these changes segregate in 
the two families. By testing both mRNA and genomic 
DNA we showed that, for the two families, the mutations 
segregate with the disease (fig. 3 and table 1 ). These muta
tions were not detected by R T- PCR in any of the other 7 8 
patients analyzed or in the 5 unaffected controls. 

In order to fully exclude that these mutations were not 
polymorphisms, we performed SSCP analysis on PCR 
products of exon 14 from 163 unaffected controls. DNA 
of members of families B-17 and B-9 5 were used as con-
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G G 

Exonl4 GG 
AA A A 
GG G G 
~m·· ···~· 
AA 

Intron 14 cc c c 
GG G G 
TT T T 
GG G G 

s B-17 

L-----------------------------------~ B 

Fig. 2. Sequence analysis of TSC-affected members of families 
B-17 and B-95. A Sequences of cloned RT-PCR products obtained 
with DGGE primers for domain 6. The 33-bp deletion in the mutant 
mRNA is indicated by the dotted line. B Direct sequencing of PCR 
products from genomic DNA surrounding exon 14. Mutations for 
both individuals are shown in the boxes. 

Fig. 3. Pedigree of family B-17 (A) and B-95 (B). The letters indi
cate alleles found for each individual: W for wild type, M for mutant 
and NT for not tested. 

trols for the detection of mobility shifts. Three variant 
forms were detected (fig. 4): the first corresponds to the 
1596 C~T polymorphism and was observed in 24 unaf
fected controls. The second corresponds to the G~ T 
transversion and was only observed in affected patients of 

Eur J Hum Genet 1997;5:280-287 283 



1 2 3 4 5 6 7 

Fig. 4. SSCP analyses of exon 14 on genomic DNA showing dif
ferent patterns corresponding to the sequence changes. Line 1: B-17, 
lines 2-6: unaffected controls, line 7: B-95. Control individuals lines 
3 and 5 present the 1596 C --7 T polymorphism. Arrows indicate 
mutant alleles for individual B-17 and B-95. 

family B-17. The third corresponds to the A-7G transi
tion and was only observed in affected patients of family 
B-95. 

Discussion 

Tuberous sclerosis is an autosomal dominant disease 
which is clinically and genetically heterogeneous. Analysis 
ofTSC2 gene mutants should lead to a better understand
ing of the molecular basis of the disorder and facilitate 
genetic counselling for many affected families. 

We used DGGE to screen for abnormalities of the 
TSC2 mRNA from 80 unrelated French cases with con
firmed genetic predisposition to tuberous sclerosis. This 
method was selected because it is one of the most sensitive 
techniques for the detection of mutations [46, 47, 51]. 
Fragments of 500 bp can be analyzed in a single experi
ment and both small deletions and point mutations can 
easily be detected. The TSC2 mRNA was divided by com
puter modelling into 13 domains suitable for DGGE anal
ysis. We report in the present study results obtained for 
domain number 6 (nucleotides 1370 to 1832). Two unre
lated TSC patients (individual 111-2 of family B-17 and 
11-1 of family B-95) showed an additional band which cor
responds to new splice site mutations. Another band was 
also observed in both TSC patients and a normal control 
confirming after sequencing the 1596 C--7 T polymor
phism previously described by Wilson et al. [ 43]. 

TSC-affected members offamilies B-17 and B-95 carry 
mutations at the acceptor splice site of exon 14. The nor
mal CAG trinucleotide consensus sequence at the accep-
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tor junction is changed to a CAT in family B-1 7 (IVS 13-
1G-7T), and to a CGG in family B-95 (IVS13-2A-7G). 
The normal acceptor splice site is thus abolished in 
affected members in both families leading to the use of a 
cryptic site present 30 bp downstream in exon 14. By 
comparing the 14-bp upstream of the two acceptors splice 
sites (normal and cryptic one), it appears that they both 
contain the necessary AG consensus with the only differ
ence being one less pyrimidine for the cryptic splice site 
[50]. Consequently a new transcript characterized by an 
in-frame deletion of 33 bp at the 5' end of exon 14 is gen
erated (fig. 5). Our findings are consistent with data 
described in a survey by Krawczak et al. [52] which 
showed that 87% of mutations in acceptor splice sites 
affect the invariant AG dinucleotide sequence and can 
lead to the use of a cryptic acceptor splice site. Moreover, 
the genomic mutations do not substantially affect the 
transcription and the stability of the corresponding mes
senger since the intensity of the DGGE RT-PCR bands 
for both normal and mutant alleles are very similar 
(fig. 1). 

This in-frame deletion cosegregates with the disease in 
these two unrelated families, and no mutation at the 
acceptor splice site of ex on 14 was detected within the 16 3 
controls tested in this study. Thus it is reasonable to 
exclude the possibility of a polymorphic variant generat
ing an alternative spliced form encountered in some indi
viduals of the general population. Clinical data show that 
all the affected members in these two families present 
severe TSC phenotypes, regarding the detection in each 
case of most of the major symptoms encountered in TSC. 
This in-frame deletion of 33 bp, corresponding to the 
deletion of amino acids 482-492 from the protein, is 
therefore likely to be responsible for the genetic predispo
sition to the disease in these families and for the severity 
of its expression. Supporting these data, it has to be 
pointed out that these amino acids have always been 
present in the variant spliced forms described to date. 
Furthermore, all the evidence we have is in favor of the 
production of a normal and mutant protein in compara
ble levels. However, to affirm that the 11 amino acids 
deletion could give a dominant negative effect to the 
mutant protein requires further experimentation. 

Mutations on the TSC2 mRNA which do not lead to a 
truncated protein include one mutation in the AD 1 do
main, two mutations near the AD2 domain and two mis
sense mutations close to the deletion we report in the 
present study (aa 482-492) (fig. 6). The presence of sever
al mutations in this region, located in the first third of the 
tuberin, suggests that this domain of the protein may play 
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Exonl3 
N 

..._ ___ __.ls-17 
CAG 
CAd 

Exon 14 
del 

B-95 CgO 
1462 

••• -.-------• Nonnal(N) 

1461 

·. ..· 
----•·. ·.• 1495 Mutant (B-17, B-95) .. . ... ·· 

'•.. ..• · .... --

Fig. 5. Normal and mutant form of the TSC2 transcript due to mutations in the acceptor 
splice site of exon 14 in families B-17 and B-95. The cryptic acceptor splice site is shown in 
italics. 

* * 

ADl GAP AD2 

# Name Consequence Reference 
I Lysl2X Nonsense (stop cocbn at position 12) Vrtel et al. [42] 

2 IVSI+IG~A Frameshift (assumed stop cocbn at position 56) Kumar et al. [44] 

3 1112relTC Frameshift (stop cocbn at position 385) Wilson et al. [43] 
4 Met449Iso Missense Wilson et al. [43] 

Del 1462cbl33 33 bp in-frame cbletion (aa 482 to 492) This study 
5 Arg505X Nonsense (stop co<hn at position 505) Wilson et al. [43] 
6 Arg611Trp Missense Wilson et al. [43] 

7 Argll99Trp Missense Wilson et al. [43] 
Ek. NS30ins5kb Genomic insertion (rat DNA) Yeung et al. [33] 

(stop cocbn at position 1272) Kobayashi et al. f341 
8 Phel509cbl 3 pb in-frame cbletion (aa 1509) Wilson et al. [43] 
9 4616ins29 Frameshift (stop co<hn at position 1564) Wilson et al. [43] 

10 4659/466DrelC Frameshift (stop co<hn at position 1575) Kumar et al. [41] 
11 Pro1709Leu Missense Wilson et al. [43] 
12 Alal712Glu Missense Wilson et al. [43] 
13 5179cblA Frameshift (polyp(!l'tire dfferent from aa 1721} Kumar et al. [40] 

Fig. 6. Summary of mutations on the TSC2 eDNA. Del: 482 del 492 deletion described in this study. GAP: 
GTPase activating protein domain. AD1 and AD2: putative activation domains described by Tsuchiya et al. [24]. 
Missense mutations or in-frame deletions are marked with a star. Human sequences were numbered according to 
Maheshwar et al. [17]. Mutations were described according to the nomenclature proposed by Beaudet and Tsui [53] 
and the Ad Hoc Comittee on Mutation Nomenclature [54]. 
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an important role in its function. However it is not possi
ble to associate the severity of the disease with the muta
tions found in this area as there is too much phenotypic 
variation between these affected patients. Moreover it is 
difficult to establish a correlation between genotype and 
phenotype in the case of a disease where a second somatic 
mutation is known to be necessary in most of the cells in 
order to express the cellular abnormality. Therefore only a 
large and systematic analysis of mutations in an extended 
data set could permit a reliable correlation between geno
type alterations and TSC phenotypes. 
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