Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cisplatin enhances the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand gene therapy via recruitment of the mitochondria-dependent death signaling pathway

Abstract

Despite adequately expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4/DR5, malignant cells are frequently refractory to the cytotoxic effect of this apoptosis-inducing ligand. The susceptibility of cancer cells to TRAIL can be potentiated by cisplatin (CDDP). This study was designed to evaluate the ability of cisplatin to enhance the cytotoxic effect of TRAIL gene therapy using the recombinant adenovirus-mediated tumor-selective expression of membrane-bound green fluorescence protein (GFP)-TRAIL fusion protein (AdVgTRAIL) on thoracic cancer cells and to elucidate the putative mechanisms responsible for this synergistic combination effect. While causing little death of cultured thoracic cancer cells by itself, AdVgTRAIL in combination with CDDP, on the other hand, mediated profound supra-additive cytotoxicity and apoptosis via a strong bystander effect. CDDP/AdVgTRAIL-induced cytotoxicity was completely abrogated either by the pancaspase inhibitor zVAD-fmk or by the selective caspase 9 inhibitor or by transient knockdown of caspase 9 by siRNA, indicating that this process was caspase-mediated and mitochondria-dependent. This was confirmed by the observation that Bcl2 overexpression protected the cells from combination-induced cytotoxicity. Robust activation of caspase 8 activity in combination-treated cells was blocked by overexpression of Bcl2, indicating that caspase 8 activation was secondary to the mitochondria-mediated amplification feedback loop. Combining CDDP with AdVgTRAIL greatly enhances its tumoricidal efficacy in cultured thoracic cancer cells in vitro. The two agents interact to mediate profound activation of caspase cascade via recruitment of the mitochondria and positive feedback loop. The CDDP/AdVgTRAIL combination also exhibits a strong antitumor effect in in vivo animal model of human cancer xenografts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AdVgTRAIL:

replication-defective adenovirus expressing GFP-TRAIL gene under hTERT promoter

GFP:

green fluorescence protein

TRAIL:

tumor necrosis factor-related apoptosis-inducing ligand

CMV:

cytomegalovirus

LacZ:

β-galactosidase gene

MTT:

(4,5-dimethylthiazo-2-yl)-2,5-diphenyl tetrazolium bromide

References

  1. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  Google Scholar 

  2. Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005; 92: 1430–1441.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.

    Article  CAS  PubMed  Google Scholar 

  4. LeBlanc HN, Ashkenazi A . Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003; 10: 66–75.

    Article  CAS  Google Scholar 

  5. Kelley SK, Ashkenazi A . Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 2004; 4: 333–339.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson DW . Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6: 1028–1042.

    Article  CAS  PubMed  Google Scholar 

  7. Salvesen GS, Dixit VM . Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 1999; 96: 10964–10967.

    Article  CAS  PubMed  Google Scholar 

  8. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM et al. A unified model for apical caspase activation. Mol Cell 2003; 11: 529–541.

    Article  CAS  PubMed  Google Scholar 

  9. Kroemer G, Dallaporta B, Resche-Rigon M . The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60: 619–642.

    Article  CAS  PubMed  Google Scholar 

  10. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P . The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002; 9: 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  11. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH . Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7: 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  12. Scorrano L, Korsmeyer SJ . Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003; 304: 437–444.

    Article  CAS  PubMed  Google Scholar 

  13. Ruffolo SC, Breckenridge DG, Nguyen M, Goping IS, Gross A, Korsmeyer SJ et al. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 2000; 7: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  14. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  15. Saelens X, Festjens N, Vande WL, van Gurp M, van Loo G, Vandenabeele P . Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23: 2861–2874.

    Article  CAS  PubMed  Google Scholar 

  16. Fulda S, Meyer E, Debatin KM . Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 2002; 21: 2283–2294.

    Article  CAS  PubMed  Google Scholar 

  17. Izeradjene K, Douglas L, Tillman DM, Delaney AB, Houghton JA . Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Res 2005; 65: 7436–7445.

    Article  CAS  PubMed  Google Scholar 

  18. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999; 144: 281–292.

    Article  CAS  PubMed  Google Scholar 

  19. Ozoren N, el Deiry WS . Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 2002; 4: 551–557.

    Article  PubMed  Google Scholar 

  20. Nguyen DM, Yeow WS, Ziauddin MF, Baras A, Tsai W, Reddy RM et al. The essential role of the mitochondria-dependent death-signaling cascade in chemotherapy-induced potentiation of Apo2L/TRAIL cytotoxicity in cultured thoracic cancer cells: amplified caspase 8 is indispensable for combination-mediated massive cell death. Cancer J 2006; 12: 257–273.

    Article  CAS  PubMed  Google Scholar 

  21. Ziauddin MF, Yeow WS, Maxhimer JB, Baras A, Chua A, Reddy RM et al. Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation. Neoplasia 2006; 8: 446–457.

    Article  CAS  PubMed  Google Scholar 

  22. Reddy RM, Yeow WS, Chua A, Nguyen DM, Baras A, Ziauddin MF et al. Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 2007; 12: 55–71.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai WS, Yeow WS, Chua A, Reddy RM, Nguyen DM, Schrump DS et al. Enhancement of Apo2L/TRAIL-mediated cytotoxicity in esophageal cancer cells by cisplatin. Mol Cancer Ther 2006; 5: 2977–2990.

    Article  CAS  PubMed  Google Scholar 

  24. Muhlethaler-Mottet A, Bourloud KB, Auderset K, Joseph JM, Gross N . Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-xL and RIP. Oncogene 2004; 23: 5415–5425.

    Article  PubMed  Google Scholar 

  25. Lacour S, Micheau O, Hammann A, Drouineaud V, Tschopp J, Solary E et al. Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon cancer cells. Oncogene 2003; 22: 1807–1816.

    Article  CAS  PubMed  Google Scholar 

  26. Kondo K, Yamasaki S, Sugie T, Teratani N, Kan T, Imamura M et al. Cisplatin-dependent upregulation of death receptors 4 and 5 augments induction of apoptosis by TNF-related apoptosis-inducing ligand against esophageal squamous cell carcinoma. Int J Cancer 2005; 118: 230–242.

    Article  Google Scholar 

  27. Evdokiou A, Bouralexis S, Atkins GJ, Chai F, Hay S, Clayer M et al. Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis. Int J Cancer 2002; 99: 491–504.

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Bodle E, Chen JY, Gao M, Rosen GD, Broaddus VC . Tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy cooperate to induce apoptosis in mesothelioma cell lines. Am J Respir Cell Mol Biol 2001; 25: 111–118.

    Article  CAS  PubMed  Google Scholar 

  29. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A et al. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 2003; 102: 303–310.

    Article  CAS  PubMed  Google Scholar 

  30. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM . Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 2004; 11 (Suppl 2): S193–S206.

    Article  CAS  PubMed  Google Scholar 

  31. Guo F, Sigua C, Tao J, Bali P, George P, Li Y et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004; 64: 2580–2589.

    Article  CAS  PubMed  Google Scholar 

  32. Fulda S, Debatin KM . Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling. Eur J Cancer 2005; 41: 786–798.

    Article  CAS  PubMed  Google Scholar 

  33. Shankar S, Srivastava RK . Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 2004; 7: 139–156.

    Article  CAS  PubMed  Google Scholar 

  34. LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002; 8: 274–281.

    Article  CAS  PubMed  Google Scholar 

  35. Ganten TM, Haas TL, Sykora J, Stahl H, Sprick MR, Fas SC et al. Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitization of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell Death Differ 2004; 11: S86–96.

    Article  CAS  PubMed  Google Scholar 

  36. Arizono Y, Yoshikawa H, Naganuma H, Hamada Y, Nakajima Y, Tasaka K . A mechanism of resistance to TRAIL/Apo2L-induced apoptosis of newly established glioma cell line and sensitisation to TRAIL by genotoxic agents. Br J Cancer 2003; 88: 298–306.

    Article  CAS  PubMed  Google Scholar 

  37. Kagawa S, He C, Gu J, Koch P, Rha SJ, Roth JA et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2001; 61: 3330–3338.

    CAS  PubMed  Google Scholar 

  38. Jacob D, Davis JJ, Zhang L, Zhu H, Teraishi F, Fang B . Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter. Cancer Gene Ther 2005; 12: 109–115.

    Article  CAS  PubMed  Google Scholar 

  39. Lin T, Huang X, Gu J, Zhang L, Roth JA, Xiong M et al. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 2002; 21: 8020–8028.

    Article  CAS  PubMed  Google Scholar 

  40. Lin T, Gu J, Zhang L, Huang X, Stephens LC, Curley SA et al. Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res 2002; 62: 3620–3625.

    CAS  PubMed  Google Scholar 

  41. Reddy RM, Tsai WS, Ziauddin MF, Zuo J, Cole Jr GW, Maxhimer JB et al. Cisplatin enhances apoptosis induced by a tumor-selective adenovirus expressing tumor necrosis factor-related apoptosis-inducing ligand. J Thorac Cardiovasc Surg 2004; 128: 883–891.

    Article  CAS  PubMed  Google Scholar 

  42. Chang JY, Zhang X, Komaki R, Cheung R, Fang B . Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys 2006; 64: 1482–1494.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Cheung RM, Komaki R, Fang B, Chang JY . Radiotherapy sensitization by tumor-specific TRAIL gene targeting improves survival of mice bearing human non-small cell lung cancer. Clin Cancer Res 2005; 11: 6657–6668.

    Article  CAS  PubMed  Google Scholar 

  44. Voelkel-Johnson C, King DL, Norris JS . Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL. Cancer Gene Ther 2002; 9: 164–172.

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen DM, Spitz FR, Yen N, Cristiano RJ, Roth JA . Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. J Thorac Cardiovasc Surg 1996; 112: 1372–1376.

    Article  CAS  PubMed  Google Scholar 

  46. Jin H, Yang R, Fong S, Totpal K, Lawrence D, Zheng Z et al. Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res 2004; 64: 4900–4905.

    Article  CAS  PubMed  Google Scholar 

  47. Charo J, Finkelstein SE, Grewal N, Restifo NP, Robbins PF, Rosenberg SA . Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res 2005; 65: 2001–2008.

    Article  CAS  PubMed  Google Scholar 

  48. He C, Lao WF, Hu XT, Xu XM, Xu J, Fang BL . Anti-liver cancer activity of TNF-related apoptosis-inducing ligand gene and its bystander effects. World J Gastroenterol 2004; 10: 654–659.

    Article  CAS  PubMed  Google Scholar 

  49. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002; 9: 979–986.

    Article  CAS  Google Scholar 

  50. Merritt JA, Roth JA, Logothetis CJ . Clinical evaluation of adenoviral-mediated p53 gene transfer: review of INGN 201 studies. Semin Oncol 2001; 28: 105–114.

    Article  CAS  PubMed  Google Scholar 

  51. Takeuchi H, Kanzawa T, Kondo Y, Komata T, Hirohata S, Kyo S et al. Combination of caspase transfer using the human telomerase reverse transcriptase promoter and conventional therapies for malignant glioma cells. Int J Oncol 2004; 25: 57–63.

    CAS  PubMed  Google Scholar 

  52. Faraoni I, Turriziani M, Masci G, De Vecchis L, Shay JW, Bonmassar E et al. Decline in telomerase activity as a measure of tumor cell killing by antineoplastic agents in vitro. Clin Cancer Res 1997; 3: 579–585.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was support by the Intramural Research Program of the National Cancer Institute of The National Institutes of Health and the start-up funds of the DeWitt Daughter Family Department of Surgery and the Sylvester Comprehensive Cancer Center, University of Miami. We acknowledge the contributions of Mr Arnold Mixon and Mr Shawn Farid of the Flow Cytometry Core Facility, Surgery Branch, Center for Cancer Research, NCI/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamimi-Noori, S., Yeow, WS., Ziauddin, M. et al. Cisplatin enhances the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand gene therapy via recruitment of the mitochondria-dependent death signaling pathway. Cancer Gene Ther 15, 356–370 (2008). https://doi.org/10.1038/sj.cgt.7701120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701120

Keywords

This article is cited by

Search

Quick links