Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer

Abstract

Persistent infection by high-risk types of human papillomaviruses (HPV) is a necessary cause of cervical cancer, with HPV16 the most prevalent, accounting for more than 50% of reported cases. The virus encodes the E6 and E7 oncoproteins, whose expression is essential for maintenance of the malignant phenotype. To select efficacious siRNAs applicable to RNAi therapy for patients with HPV16+ cervical cancer, E6 and E7 siRNAs were designed using siDirect computer software, after which 10 compatible with all HPV16 variants were selected, and then extensively examined for RNAi activity and specificity using HPV16+ and HPV16−cells. Three siRNAs with the highest RNAi activities toward E6 and E7 expression, as well as specific and potent growth suppression of HPV16+ cancer cells as low as 1 nM were chosen. Growth suppression was accompanied by accumulation of p53 and p21WAF1/CIP1, as well as morphological and cytochemical changes characteristic of cellular senescence. Antitumor activity of one of the selected siRNAs was confirmed by retarded tumor growth of HPV16+ cells in NOD/SCID mice when locally injected in a complex with atelocollagen. Our results demonstrate that these E6 and E7 siRNAs are promising therapeutic agents for treatment of virus-related cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bosch FX, de Sanjose S . Chapter 1: human papillomavirus and cervical cancer—burden and assessment of causality. J Natl Cancer Inst Monogr 2003; 31: 3–13.

    Article  Google Scholar 

  2. zur Hausen H . Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 2000; 92: 690–698.

    Article  CAS  PubMed  Google Scholar 

  3. Longworth MS, Laimins LA . Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68: 362–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol 2004; 78: 11451–11460.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flores ER, Allen-Hoffmann BL, Lee D, Lambert PF . The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol 2000; 74: 6622–6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bischof O, Nacerddine K, Dejean A . Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol 2005; 25: 1013–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venturini F, Braspenning J, Homann M, Gissmann L, Sczakiel G . Kinetic selection of HPV 16 E6/E7-directed antisense nucleic acids: anti-proliferative effects on HPV 16-transformed cells. Nucleic Acids Res 1999; 27: 1585–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alvarez-Salas LM, Cullinan AE, Siwkowski A, Hampel A, DiPaolo JA . Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc Natl Acad Sci USA 1998; 95: 1189–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Z, Kamath P, Zhang S, St John L, Adler-Storthz K, Shillitoe EJ . Effects on tumor cells of ribozymes that cleave the RNA transcripts of human papillomavirus type 18. Cancer Gene Ther 1996; 3: 18–23.

    CAS  PubMed  Google Scholar 

  10. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  11. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA . Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001; 98: 9742–9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang M, Milner J . Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 2003; 8: 762–768.

    Article  CAS  PubMed  Google Scholar 

  14. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  15. Hall AH, Alexander KA . RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 2003; 77: 6066–6069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Putral LN, Bywater MJ, Gu W, Saunders NA, Gabrielli BG, Leggatt GR et al. RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol Pharmacol 2005; 68: 1311–1319.

    Article  CAS  PubMed  Google Scholar 

  17. Niu XY, Peng ZL, Duan WQ, Wang H, Wang P . Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer 2006; 16: 743–751.

    Article  PubMed  Google Scholar 

  18. Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G et al. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006; 13: 1023–1032.

    Article  CAS  PubMed  Google Scholar 

  19. Kuner R, Vogt M, Sultmann H, Buness A, Dymalla S, Bulkescher J et al. Identification of cellular targets for the human papillomavirus E6 and E7 oncogenes by RNA interference and transcriptome analyses. J Mol Med 2007; 85: 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  20. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  PubMed  Google Scholar 

  21. Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 2005; 33: 4527–4535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12: 1179–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11: 263–270.

    Article  CAS  PubMed  Google Scholar 

  24. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I . Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23: 457–462.

    Article  CAS  PubMed  Google Scholar 

  25. Haley B, Zamore PD . Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 2004; 11: 599–606.

    Article  CAS  PubMed  Google Scholar 

  26. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004; 32: 936–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K . siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 2004; 32: W124–W129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanda T, Furuno A, Yoshiike K . Human papillomavirus type 16 open reading frame E7 encodes a transforming gene for rat 3Y1 cells. J Virol 1988; 62: 610–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smotkin D, Prokoph H, Wettstein FO . Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol 1989; 63: 1441–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD . Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    Article  CAS  PubMed  Google Scholar 

  31. Khvorova A, Reynolds A, Jayasena SD . Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216.

    Article  CAS  PubMed  Google Scholar 

  32. Matsumoto K, Yoshikawa H, Nakagawa S, Tang X, Yasugi T, Kawana K et al. Enhanced oncogenicity of human papillomavirus type 16 (HPV16) variants in Japanese population. Cancer Lett 2000; 156: 159–165.

    Article  CAS  PubMed  Google Scholar 

  33. Hu X, Pang T, Guo Z, Ponten J, Nister M, Bernard Afink G . Oncogene lineages of human papillomavirus type 16 E6, E7 and E5 in preinvasive and invasive cervical squamous cell carcinoma. J Pathol 2001; 195: 307–311.

    Article  CAS  PubMed  Google Scholar 

  34. Zehbe I, Tachezy R, Mytilineos J, Voglino G, Mikyskova I, Delius H et al. Human papillomavirus 16 E6 polymorphisms in cervical lesions from different European populations and their correlation with human leukocyte antigen class II haplotypes. Int J Cancer 2001; 94: 711–716.

    Article  CAS  PubMed  Google Scholar 

  35. Chan PK, Lam CW, Cheung TH, Li WW, Lo KW, Chan MY et al. Human papillomavirus type 16 intratypic variant infection and risk for cervical neoplasia in southern China. J Infect Dis 2002; 186: 696–700.

    Article  CAS  PubMed  Google Scholar 

  36. Kammer C, Tommasino M, Syrjanen S, Delius H, Hebling U, Warthorst U et al. Variants of the long control region and the E6 oncogene in European human papillomavirus type 16 isolates: implications for cervical disease. Br J Cancer 2002; 86: 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tornesello ML, Duraturo ML, Salatiello I, Buonaguro L, Losito S, Botti G et al. Analysis of human papillomavirus type-16 variants in Italian women with cervical intraepithelial neoplasia and cervical cancer. J Med Virol 2004; 74: 117–126.

    Article  CAS  PubMed  Google Scholar 

  38. Brown KM, Chu CY, Rana TM . Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 2005; 12: 469–470.

    Article  CAS  PubMed  Google Scholar 

  39. Schubert S, Grunweller A, Erdmann VA, Kurreck J . Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 2005; 348: 883–893.

    Article  CAS  PubMed  Google Scholar 

  40. Overhoff M, Alken M, Far RK, Lemaitre M, Lebleu B, Sczakiel G et al. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol 2005; 348: 871–881.

    Article  CAS  PubMed  Google Scholar 

  41. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5: 834–839.

    Article  CAS  PubMed  Google Scholar 

  42. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J et al. Position-specific chemical modification of siRNAs reduces ‘off-target’ transcript silencing. RNA 2006; 12: 1197–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173–178.

    Article  CAS  PubMed  Google Scholar 

  44. Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005; 102: 12177–12182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kariko K, Buckstein M, Ni H, Weissman D . Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23: 165–175.

    Article  CAS  PubMed  Google Scholar 

  46. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005; 23: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  47. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003; 17: 991–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeFilippis RA, Goodwin EC, Wu L, DiMaio D . Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 2003; 77: 1551–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K et al. Mitogenic signalling and the p16IINK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 2006; 8: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  50. Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ . HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol 2006; 208: 152–164.

    Article  CAS  PubMed  Google Scholar 

  51. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006; 439: 89–94.

    Article  CAS  PubMed  Google Scholar 

  52. Koshiol JE, Schroeder JC, Jamieson DJ, Marshall SW, Duerr A, Heilig CM et al. Time to clearance of human papillomavirus infection by type and human immunodeficiency virus serostatus. Int J Cancer 2006; 119: 1623–1629.

    Article  CAS  PubMed  Google Scholar 

  53. Palefsky J . Human papillomavirus-associated malignancies in HIV-positive men and women. Curr Opin Oncol 1995; 7: 437–441.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Hideki Matsui and Dr Kazuhito Tomizawa (Okayama University) for their helpful discussion and suggestions. This work was supported in part by Grants-in-aid for Scientific Research (C) from Japan Society for the Promotion of Science [15591749 (MY), 19592169 (KY)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Yamato.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamato, K., Yamada, T., Kizaki, M. et al. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther 15, 140–153 (2008). https://doi.org/10.1038/sj.cgt.7701118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701118

Keywords

This article is cited by

Search

Quick links