Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proof concept for clinical justification of network mapping for personalized cancer therapeutics

Abstract

To identify signature targets associated with patient-specific cancer lesions based on tumor versus normal tissue differential protein and mRNA coexpression patterns for the purpose of synthesizing cancer-specific customized RNA interference knockdown therapeutics. Analysis of biopsied tissue involved two-dimensional difference in-gel electrophoresis (2D-DIGE) analysis coupled with MALDI-TOF/TOF mass spectrometry for proteomic assessment. Standard microarray techniques were utilized for mRNA analysis. Priority was assigned to overexpressed protein targets with co-overexpressed genes with a high likelihood of functional nodal centrality in the cancer network as defined by the interactive databases BIND, HPRD and ResNet. HPLC-grade small interfering RNA (siRNA) duplexes were utilized to assess knockdown of target proteins in expressive cell lines as measured by western blot. Seven patients with metastatic cancer underwent biopsy. One patient (RW001) had biopsies from two disease sites 10 months apart. Seven priority proteins were identified, one for each patient (RACK 1, Ras related nuclear protein, heat-shock 27 kDa protein 1, superoxide dismutase, enolase1, stathmin1 and cofilin1). Prioritized proteins in RW001 from the two disease sites over time were the same. We demonstrated >80% siRNA inhibition of RACK 1 and stathmin1 of inexpressive malignant cell lines with correlated cell kill. Identification of functionally relevant target gene fingerprints, unique to an individual's cancer, is feasible ‘at the bedside’ and can be utilized to synthesize siRNA knockdown therapeutics. Further animal safety testing followed by clinical study is recommended.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Berman J . Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches. BMC Cancer 2005; 5: 100.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Keith CT, Borisy AA, Stockwell BR . Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 2005; 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  3. Kamb A . What's wrong with our cancer models? Nat Rev Drug Discov 2005; 4: 161–165.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  5. Carlson JM, Doyle J . Complexity and robustness. Proc Natl Acad Sci USA 2002; 99 (Suppl 1): 2538–2545.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stelling J, Sauer U, Szallasi Z, Doyle III FJ, Doyle J . Robustness of cellular functions. Cell 2004; 118: 675–685.

    Article  CAS  PubMed  Google Scholar 

  7. Albert R, Jeong H, Barabasi AL . Error and attack tolerance of complex networks. Nature 2000; 406: 378–382.

    Article  CAS  PubMed  Google Scholar 

  8. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH . Integrating genetic approaches into the discovery of anticancer drugs. Science 1997; 278: 1064–1068.

    Article  CAS  PubMed  Google Scholar 

  9. Weinstein IB . Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002; 297: 63–64.

    Article  CAS  PubMed  Google Scholar 

  10. Jeong H, Mason SP, Barabasi AL, Oltvai ZN . Lethality and centrality in protein networks. Nature 2001; 411: 41–42.

    Article  CAS  PubMed  Google Scholar 

  11. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 2002; 1: 117–124.

    Article  CAS  PubMed  Google Scholar 

  13. Feldman AL, Espina V, Petricoin III EF, Liotta LA, Rosenblatt KP . Use of proteomic patterns to screen for gastrointestinal malignancies. Surgery 2004; 135: 243–247.

    Article  PubMed  Google Scholar 

  14. Petricoin E, Wulfkuhle J, Espina V, Liotta LA . Clinical proteomics: revolutionizing disease detection and patient tailoring therapy. J Proteome Res 2004; 3: 209–217.

    Article  CAS  PubMed  Google Scholar 

  15. Brown PO, Botstein D . Exploring the new world of the genome with DNA microarrays. Nat Genet 1999; 21 (1 Suppl): 33–37.

    Article  CAS  PubMed  Google Scholar 

  16. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  17. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 2001; 98: 13784–13789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  19. Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 2004; 23: 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  20. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  21. Ichim TE, Li M, Qian H, Popov IA, Rycerz K, Zheng X et al. RNA interference: a potent tool for gene-specific therapeutics. Am J Transplant 2004; 4: 1227–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Press WH, Teukolsky SA, Vetterling WT, Flannery BP . Numerical Recipes in C. 2nd edn. Cambridge University Press, 1992, 994pp.

    Google Scholar 

  23. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  24. Furney SJ, Higgins DG, Ouzounis CA, Lopez-Bigas N . Structural and functional properties of genes involved in human cancer. BMC Genomics 2006; 7: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32 (Database issue): D258–D261.

    CAS  PubMed  Google Scholar 

  26. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daraselia N, Yuryev A, Egorov S, Novichkova S, Nikitin A, Mazo I . Extracting human protein interactions from MEDLINE using a full-sentence parser. Bioinformatics 2004; 20: 604–611.

    Article  CAS  PubMed  Google Scholar 

  28. Bader GD, Betel D, Hogue CW . BIND: the biomolecular interaction network database. Nucleic Acids Res 2003; 31: 248–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 2004; 32 (Database issue): D497–D501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarkar D, Boukerche H, Su ZZ, Fisher PB . mda-9/syntenin: recent insights into a novel cell signaling and metastasis-associated gene. Pharmacol Ther 2004; 104: 101–115.

    Article  CAS  PubMed  Google Scholar 

  31. Koo TH, Lee JJ, Kim EM, Kim KW, Kim HD, Lee JH . Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene 2002; 21: 4080–4088.

    Article  CAS  PubMed  Google Scholar 

  32. Helmke BM, Polychronidis M, Benner A, Thome M, Arribas J, Deichmann M . Melanoma metastasis is associated with enhanced expression of the syntenin gene. Oncol Rep 2004; 12: 221–228.

    CAS  PubMed  Google Scholar 

  33. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D . Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 1994; 91: 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mochly-Rosen D, Khaner H, Lopez J . Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci USA 1991; 88: 3997–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Besson A, Wilson TL, Yong VW . The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 2002; 277: 22073–22084.

    Article  CAS  PubMed  Google Scholar 

  36. Chang BY, Conroy KB, Machleder EM, Cartwright CA . RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol 1998; 18: 3245–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liliental J, Chang DD . Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem 1998; 273: 2379–2383.

    Article  CAS  PubMed  Google Scholar 

  38. Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croze E et al. The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J Biol Chem 2001; 276: 22948–22953.

    Article  CAS  PubMed  Google Scholar 

  39. Hermanto U, Zong CS, Li W, Wang LH . RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 2002; 22: 2345–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saito A, Fujii G, Sato Y, Gotoh M, Sakamoto M, Toda G et al. Detection of genes expressed in primary colon cancers by in situ hybridisation: overexpression of RACK 1. Mol Pathol 2002; 55: 34–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans JD, Cornford PA, Dodson A, Neoptolemos JP, Foster CS . Expression patterns of protein kinase C isoenzymes are characteristically modulated in chronic pancreatitis and pancreatic cancer. Am J Clin Pathol 2003; 119: 392–402.

    Article  CAS  PubMed  Google Scholar 

  42. Kellner R, Lichtenfels R, Atkins D, Bukur J, Ackermann A, Beck J et al. Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics 2002; 2: 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  43. Friedrich B, Gronberg H, Landstrom M, Gullberg M, Bergh A . Differentiation-stage specific expression of oncoprotein 18 in human and rat prostatic adenocarcinoma. Prostate 1995; 27: 102–109.

    Article  CAS  PubMed  Google Scholar 

  44. Li C, Tan YX, Zhou H, Ding SJ, Li SJ, Ma DJ et al. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: identification of potential tumor markers. Proteomics 2005; 5: 1125–1139.

    Article  PubMed  Google Scholar 

  45. Koike H, Uzawa K, Nakashima D, Shimada K, Kato Y, Higo M et al. Identification of differentially expressed proteins in oral squamous cell carcinoma using a global proteomic approach. Int J Oncol 2005; 27: 59–67.

    CAS  PubMed  Google Scholar 

  46. Iancu-Rubin C, Atweh GF . p27(Kip1) and stathmin share the stage for the first time. Trends Cell Biol 2005; 15: 346–348.

    Article  CAS  PubMed  Google Scholar 

  47. Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY et al. Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 2003; 63: 7167–7175.

    CAS  PubMed  Google Scholar 

  48. Alaiya A, Roblick U, Egevad L, Carlsson A, Franzen B, Volz D et al. Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma. Anal Cell Pathol 2000; 21: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montgomerie JZ, Gracy RW, Holshuh HJ, Keyser AJ, Bennett CJ, Schick DG . The 28 K protein in urinary bladder, squamous metaplasia and urine is triosephosphate isomerase. Clin Biochem 1997; 30: 613–618.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES . Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics 2005; 4: 1686–1696.

    Article  CAS  PubMed  Google Scholar 

  51. Diggle CP, Cruickshank S, Olsburgh JD, Pellegrin S, Smith B, Banks RE et al. Identification of genes up-regulated in urothelial tumors: the 67-kd laminin receptor and tumor-associated trypsin inhibitor. Am J Pathol 2003; 163: 493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S et al. Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 2005; 12: 1134–1140.

    Article  CAS  PubMed  Google Scholar 

  53. Chandra D, Choy G, Daniel PT, Tang DG . Bax-dependent regulation of Bak by voltage-dependent anion channel 2. J Biol Chem 2005; 280: 19051–19061.

    Article  CAS  PubMed  Google Scholar 

  54. Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB . The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem 1999; 274: 14909–14917.

    Article  CAS  PubMed  Google Scholar 

  55. Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ . RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 2000; 14: 2549–2558.

    Article  CAS  PubMed  Google Scholar 

  56. Jensen ON . Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 2006; 7: 391–403.

    Article  CAS  PubMed  Google Scholar 

  57. Aksenov SV, Church B, Dhiman A, Georgieva A, Sarangapani R, Helmlinger G et al. An integrated approach for inference and mechanistic modeling for advancing drug development. FEBS Lett 2005; 579: 1878–1883.

    Article  CAS  PubMed  Google Scholar 

  58. Senzer N, Shen Y, Hill C, Nemunaitis J . Individualised cancer therapeutics: dream or reality? Expert Opin Ther Targets 2005; 9: 1189–1201.

    Article  PubMed  Google Scholar 

  59. Christopher R, Dhiman A, Fox J, Gendelman R, Haberitcher T, Kagle D et al. Data-driven computer simulation of human cancer cell. Ann N Y Acad Sci 2004; 1020: 132–153.

    Article  CAS  PubMed  Google Scholar 

  60. Pearl J . Causality: Models, Reasoning, and Inference. Cambridge University Press: Cambridge, UK, New York, 2000.

    Google Scholar 

  61. Ajani J, Allgood V . Molecular mechanisms in cancer: what should clinicians know? Semin Oncol 2005; 32 (Suppl 8): 2–4.

    Article  PubMed  Google Scholar 

  62. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001; 98: 13790–13795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  64. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  65. Stein U, Stege A, Walther W, Lage H . Complete in vivo reversal of the multidrug resistance (MDR) phenotype in a breast cancer model by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther (in press).

  66. Lage H . Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 2005; 1: 103–113.

    Article  CAS  PubMed  Google Scholar 

  67. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V . Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA 2004; 101: 1927–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 2005; 37: 1289–1295.

    Article  CAS  PubMed  Google Scholar 

  71. Grimm D, Kay MA . Therapeutic short hairpin RNA expression in the liver: viral targets and vectors. Gene Therapy 2006; 13: 563–575.

    Article  CAS  PubMed  Google Scholar 

  72. Gu J, Fang B . Telomerase promoter-driven cancer gene therapy. Cancer Biol Ther 2003; 2 (Suppl 1): S64–S70.

    CAS  PubMed  Google Scholar 

  73. Friedman N . Inferring cellular networks using probabilistic graphical models. Science 2004; 303: 799–805.

    Article  CAS  PubMed  Google Scholar 

  74. di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 2005; 23: 377–383.

    Article  CAS  PubMed  Google Scholar 

  75. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP . Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005; 308: 523–529.

    Article  CAS  PubMed  Google Scholar 

  76. Smith VA, Jarvis ED, Hartemink AJ . Evaluating functional network inference using simulations of complex biological systems. Bioinformatics 2002; 18 (Suppl 1): S216–S224.

    Article  PubMed  Google Scholar 

  77. Bachtiary B, Boutros PC, Pintilie M, Shi W, Bastianutto C, Li JH et al. Gene expression profiling in cervical cancer: an exploration of intratumor heterogeneity. Clin Cancer Res 2006; 12: 5632–5640.

    Article  CAS  PubMed  Google Scholar 

  78. Strillacci A, Griffoni C, Spisni E, Manara MC, Tomasi V . RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells. Br J Cancer 2006; 94: 1300–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12: 1197–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Nemunaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemunaitis, J., Senzer, N., Khalil, I. et al. Proof concept for clinical justification of network mapping for personalized cancer therapeutics. Cancer Gene Ther 14, 686–695 (2007). https://doi.org/10.1038/sj.cgt.7701057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701057

Keywords

This article is cited by

Search

Quick links