Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suitability of a US3-inactivated HSV mutant (L1BR1) as an oncolytic virus for pancreatic cancer therapy

Abstract

Recently, the use of oncolytic viruses against cancer has attracted considerable attention. We studied the potential of the US3 locus-deficient herpes simplex virus (HSV), L1BR1, for oncolytic virus therapy. Its high specificity and potency indicate that L1BR1 is a promising candidate as a new oncolytic virus against pancreatic cancer. Moreover, the virus exhibited the unique characteristic of increasing apoptosis when used in combination with anticancer drugs. We assessed the feasibility of using the US3 locus-deficient HSV named L1BR1 as a new replication-competent oncolytic virus for the treatment of pancreatic cancer. The US3 locus of HSV has been shown to be a key gene in producing a multifunctional protein kinase that inhibits apoptosis induced by viral infections, chemicals and ultraviolet (UV) light. L1BR1 has been reported to be more than 10 000-fold less virulent than the parental virus in mice. In this study, we examined the tumor specificity and oncolytic effect of this attenuated replication-competent virus, L1BR1, in pancreatic cancers derived from SW1990, Capan2 and Bxpc-3cells compared with the parent virus and other well-known oncolytic herpes viruses (R3616 and hrR3). We also studied the efficacy of L1BR1 for the induction of apoptosis as an attribute of this virus in combination with the anticancer drugs 5FU and cisplatin. The combined treatment of the pancreatic cancer cells with L1BR1 and these anticancer drugs enhanced apoptosis significantly. More importantly, L1BR1 showed the lowest replication capacity in normal human hepatocytes, but the highest tumor-reducing effect in vivo among the oncolytic herpes viruses tested. In addition, L1BR1 significantly increased the induction of apoptosis of cancer cells when treated in combination with anticancer drugs although the parental virus inhibited the induction of apoptosis. These results suggest that L1BR1 is promising as a new anticancer oncolytic virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. O'Brien V . Virus and apoptosis. J Gen Virol 1998; 66: 6939–6945.

    Google Scholar 

  2. Teodoro JG, Branton PE . Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 1997; 71: 3620–3627.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Teodoro JG, Branton PE . Regulation of apoptosis by viral gene products. J Virol 1997; 71: 1739–1746.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tschopp J, Thome M, Hofmann K, Meinl E . The fight of viruses against apoptosis. Curr Opin Genet Dev 1998; 8: 82–87.

    Article  CAS  PubMed  Google Scholar 

  5. Nishiyama Y, Murata T . Anti-apoptotic protein kinase of herpes simplex virus. Trends Microbiol 2002; 10: 105–107.

    Article  CAS  PubMed  Google Scholar 

  6. Murata T, Goshima F, Daikoku T, Takakuwa H, Nishiyama Y . Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 2000; 5: 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  7. Leopardi R, Van Sant C, Roizman B . The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci USA 1997; 94: 7891–7896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Munger J, Roizman B . The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 2001; 98: 10410–10415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishiyama Y, Yamada Y, Kurachi R, Daikoku T . Construction of a US3 lacZ insertion mutant of herpes simplex virus type 2 and characterization of its phenotype in vitro and in vivo. Virology 1992; 190: 256–268.

    Article  CAS  PubMed  Google Scholar 

  10. Asano S, Honda T, Goshima F . US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. J Gen Virol 1999; 80: 51–56.

    Article  CAS  PubMed  Google Scholar 

  11. Aubert M, Blaho JA . The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol 1999; 73: 2803–2813.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Galvan V, Roizman B . Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci USA 1998; 95: 3931–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koyama AH, Adachi H . Induction of apoptosis by herpes simplex virus type 1. J Gen Virol 1997; 78: 2909–2912.

    Article  CAS  PubMed  Google Scholar 

  14. Jerome KR, Tait JF, Koelle DM, Corey L . Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. J Virol 1998; 72: 436–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Galvan V, Bradimarti R, Roizman B . Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J Virol 1999; 73: 3219–3226.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Leopardi R, Roizman B . The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 1996; 93: 9583–9587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jerome KR, Fox R, Chen Z, Sears AE, Lee H, Corey L . Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 1999; 73: 8950–8957.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sawada T, Ho JJL, Chung YS . Stimulation of cellular motility by factor(s) released by SW1990 pancreatic cancer cells. Gastroenterology 1993; 104: A334.

    Google Scholar 

  19. Aoki K, Yoshida T, Matsumoto N . Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther 1997; 8: 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  20. Hosono J, Narita T, Kimura N, Sato M, Nakashio T, Kasai Y . Involvement of adhesion molecules in metastasis of SW1990, human pancreatic cancer cells. J Surg Oncol 1998; 67: 77–84.

    Article  CAS  PubMed  Google Scholar 

  21. Rice SA, Lam V, Knipe DM . The acidic amino-terminal region of herpes simplex virus type 1 alpha protein ICP27 is required for an essential lytic function. J Virol 1993; 67: 1778–1787.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK . Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg 1996; 224: 329–330.

    Article  Google Scholar 

  23. Asano S, Honda T, Goshima F, Watanabe D, Miyake Y, Sugiura Y . US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. J Gen Virol 1999; 80: 51–56.

    Article  CAS  PubMed  Google Scholar 

  24. Koyama AH, Akari H, Adachi A . Induction of apoptosis in Hep-2 cells by infection with herpes simplex virus type 2. Arch Virol 1998; 143: 2435–2441.

    Article  CAS  PubMed  Google Scholar 

  25. Antoni BA, Sabbatini P, Rabson AB, White E . Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection. J Virol 1995; 69: 2384–2392.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chinnaiyan AM, Woffendin C, Dixit VM, Nabel GJ . The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nat Med 1997; 3: 333–337.

    Article  CAS  PubMed  Google Scholar 

  27. Sandstrom PA, Roberts B, Folks TM, Buttke TM . HIV gene expression enhances T cell susceptibility to hydrogen peroxide-induced apoptosis. AIDS Res Hum Retroviruses 1993; 9: 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  28. Clem RJ, Fechheimer M, Miller LK . Protein prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991; 29: 1388–1390.

    Article  Google Scholar 

  29. Brun A, Rivas C, Esteban M, Escribano JM, Alonso C . African swine fever virus gene A179L, a viral homologue of bcl-2, protects cells from programmed cell death. Virology 1996; 225: 227–230.

    Article  CAS  PubMed  Google Scholar 

  30. Afonso CL, Neilan JG, Kutish GF, Rock DL . An African swine fever virus Bc1-2 homolog, 5-HL, suppresses apoptotic cell death. J Virol 1996; 70: 4858–4863.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gooding LR . Virus proteins that counteract host immune defenses. Cell 1992; 71: 5–7 Review.

    Article  CAS  PubMed  Google Scholar 

  32. Sauthoff H, Heitner S, Rom WN, Hay JG . Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 2000; 11: 379–388.

    Article  CAS  PubMed  Google Scholar 

  33. Boulakia CA, Chen G, Ng FW, Teodoro JG, Branton PE, Nicholson DW . Bcl-2 and adenovirus E1B 19kDA protein prevent E1A-induced processing of CPP32 and cleavage of poly (ADP-ribose) polymerase. Oncogene 1996; 12: 529–535.

    CAS  PubMed  Google Scholar 

  34. Rao L, Perez D, White E . Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 1996; 135: 1441–1455.

    Article  CAS  PubMed  Google Scholar 

  35. Hu MC, Hsu MT . Adenovirus E1B 19K protein is required for efficient DNA replication in U937 cells. Virology 1997; 227: 295–304.

    Article  CAS  PubMed  Google Scholar 

  36. Chiou SK, White E . Inhibition of ICE-like proteases inhibits apoptosis and increases virus production during adenovirus infection. Virology 1998; 244: 108–118.

    Article  CAS  PubMed  Google Scholar 

  37. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.

    Article  CAS  PubMed  Google Scholar 

  38. Yeung SN, Tufaro F . Replicating herpes simplex virus vectors for cancer gene therapy. Expert Opin Pharmacother 2000; 1: 623–631.

    Article  CAS  PubMed  Google Scholar 

  39. Varghese S, Rabkin SD . Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002; 9: 967–978 Review.

    Article  CAS  PubMed  Google Scholar 

  40. Nakao A, Kimata H, Imai T, Kikumori T, Teshigahara O, Nagasaka T . Injection of herpes simplex virus HF10 in recurrent breast cancer. Ann Oncol 2004; 15: 988–989.

    Article  CAS  PubMed  Google Scholar 

  41. Takakuwa H, Goshima F, Nozawa N, Yoshikawa T, Kimata H, Nakao A . Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. Arch Virol 2003; 148: 813–825.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grant-in-Aid for Scientific Research in Japan, No. 16390358. There is no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Kasuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasuya, H., Nishiyama, Y., Nomoto, S. et al. Suitability of a US3-inactivated HSV mutant (L1BR1) as an oncolytic virus for pancreatic cancer therapy. Cancer Gene Ther 14, 533–542 (2007). https://doi.org/10.1038/sj.cgt.7701049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701049

Keywords

This article is cited by

Search

Quick links