Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Engineered CD8+ cytotoxic T cells with fiber-modified adenovirus-mediated TNF-α gene transfection counteract immunosuppressive interleukin-10-secreting lung metastasis and solid tumors

Abstract

T-cell suppression derived from tumor-secreted immunosuppressive interleukin (IL)-10 becomes a major barrier to CD8+ T-cell immunotherapy of tumors. Tumor necrosis factor-alpha (TNF-α) is a multifunctional cytokine capable of activating T and dendritic cells (DCs) and counteracting IL-10-mediated DC inhibition and regulatory T-cell-mediated immune suppression. In this study, we constructed a recombinant adenovirus MFAdVTNF with fiber-gene modified by RGD insertion into the viral knob's H1 loop and a melanoma cell line B16OVA/IL−10 engineered to express ovalbumin (OVA) and to secrete IL-10 (2.2 ng/ml/106 cells/24 h). We transfected OVA-specific CD8+ T cells with MFAdVTNF, and found a fivefold increase in transgene human TNF-α secretion (4.3 ng/ml/106 cells/24 h) by the engineered CD8+ TTNF cells transfected with MFAdVTNF, compared to that (0.8 ng/ml/106 cells/24 h) by CD8+ T cells transfected with the original AdVTNF without viral fiber modification. The engineered CD8+ TTNF cells exhibited enhanced cytotoxicity and elongated survival in vivo after adoptive transfer. TNF-α derived from both the donor CD8+ T cells and the host cells plays an important role in donor CD8+ T-cell survival in vivo after adoptive transfer. We also demonstrated that the transfected B16OVA/IL−10 tumor cells secreting IL-10 are more resistant to in vivo CD8+ T-cell therapy than the original B16OVA tumor cells without IL-10 expression. Interestingly, the engineered CD8+ TTNF cells secreting transgene-coded TNF-α, but not the control CD8+ Tcontrol cells without any transgene expression eradicated IL-10-secreting 12-day lung micrometastasis in all 10/10 mice and IL-10-secreting solid tumors (5 mm in diameter) in 6/10 mice. Transfer of the engineered CD8+ TTNF cells further induced both donor- and host-derived memory CD8+ T cells, leading to a stronger long-term antitumor immunity against the IL-10-secreting B16OVA/IL−10 tumor cell challenges. Therefore, CD8+ T cells engineered to secrete TNF-α may be useful when designing strategies for adoptive T-cell therapy of solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Plautz GE, Touhalisky JE, Shu S . Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 1997; 178: 101–107.

    Article  CAS  PubMed  Google Scholar 

  2. Peng L, Shu S, Krauss JC . Treatment of subcutaneous tumor with adoptively transferred T cells. Cell Immunol 1997; 178: 24–32.

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka H, Yoshizawa H, Yamaguchi Y, Ito K, Kagamu H, Suzuki E et al. Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J Immunol 1999; 162: 3574–3582.

    CAS  PubMed  Google Scholar 

  4. Eck SC, Turka LA . Adoptive transfer enables tumor rejection targeted against a self-antigen without the induction of autoimmunity. Cancer Res 2001; 61: 3077–3083.

    CAS  PubMed  Google Scholar 

  5. Dobrzanski MJ, Reome JB, Dutton RW . Type 1 and type 2 CD8+ effector T cell subpopulations promote long-term tumor immunity and protection to progressively growing tumor. J Immunol 2000; 164: 916–925.

    Article  CAS  PubMed  Google Scholar 

  6. Becker C, Pohla H, Frankenberger B, Schuler T, Assenmacher M, Schendel DJ et al. Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay. Nat Med 2001; 7: 1159–1162.

    Article  CAS  PubMed  Google Scholar 

  7. Gastl GA, Abrams JS, Nanus DM, Oosterkamp R, Silver J, Liu F et al. Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int J Cancer 1993; 55: 96–101.

    Article  CAS  PubMed  Google Scholar 

  8. Smith DR, Kunkel SL, Burdick MD, Wilke CA, Orringer MB, Whyte RI et al. Production of interleukin-10 by human bronchogenic carcinoma. Am J Pathol 1994; 145: 18–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Taga K, Mostowski H, Tosato G . Human interleukin-10 can directly inhibit T-cell growth. Blood 1993; 81: 2964–2971.

    CAS  PubMed  Google Scholar 

  10. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH . CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 2002; 99: 2468–2476.

    Article  CAS  PubMed  Google Scholar 

  11. Groux H, Bigler M, de Vries JE, Roncarolo MG . Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996; 184: 19–29.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh CL, Chen DS, Hwang LH . Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 2000; 11: 681–692.

    Article  CAS  PubMed  Google Scholar 

  13. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001; 166: 3789–3796.

    Article  CAS  PubMed  Google Scholar 

  14. Yang AS, Lattime EC . Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 2003; 63: 2150–2157.

    CAS  PubMed  Google Scholar 

  15. Kawamura K, Bahar R, Natsume W, Sakiyama S, Tagawa M . Secretion of interleukin-10 from murine colon carcinoma cells suppresses systemic antitumor immunity and impairs protective immunity induced against the tumors. Cancer Gene Ther 2002; 9: 109–115.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Hernandez ML, Hernandez-Pando R, Gariglio P, Berumen J . Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology 2002; 105: 231–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chau GY, Wu CW, Lui WY, Chang TJ, Kao HL, Wu LH et al. Serum interleukin-10 but not interleukin-6 is related to clinical outcome in patients with resectable hepatocellular carcinoma. Ann Surg 2000; 231: 552–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Vita F, Orditura M, Galizia G, Romano C, Lieto E, Iodice P et al. Serum interleukin-10 is an independent prognostic factor in advanced solid tumors. Oncol Rep 2000; 7: 357–361.

    CAS  PubMed  Google Scholar 

  19. Robinet E, Branellec D, Termijtelen AM, Blay JY, Gay F, Chouaib S et al. Evidence for tumor necrosis factor-alpha involvement in the optimal induction of class I allospecific cytotoxic T cells. J Immunol 1990; 144: 4555–4561.

    CAS  PubMed  Google Scholar 

  20. Lahn M, Kalataradi H, Mittelstadt P, Pflum E, Vollmer M, Cady C et al. Early preferential stimulation of gamma delta T cells by TNF-alpha. J Immunol 1998; 160: 5221–5230.

    CAS  PubMed  Google Scholar 

  21. Zhang W, Chen Z, Li F, Kamencic H, Juurlink B, Gordon JR et al. Tumour necrosis factor-alpha (TNF-alpha) transgene-expressing dendritic cells (DCs) undergo augmented cellular maturation and induce more robust T-cell activation and anti-tumour immunity than DCs generated in recombinant TNF-alpha. Immunology 2003; 108: 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lyakh LA, Koski GK, Telford W, Gress RE, Cohen PA, Rice NR et al. Bacterial lipopolysaccharide, TNF-alpha, and calcium ionophore under serum-free conditions promote rapid dendritic cell-like differentiation in CD14+ monocytes through distinct pathways that activate NK-kappa B. J Immunol 2000; 165: 3647–3655.

    Article  CAS  PubMed  Google Scholar 

  23. Sepulveda H, Cerwenka A, Morgan T, Dutton RW . CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J Immunol 1999; 163: 1133–1142.

    CAS  PubMed  Google Scholar 

  24. Brunner C, Seiderer J, Schlamp A, Bidlingmaier M, Eigler A, Haimerl W et al. Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 2000; 165: 6278–6286.

    Article  CAS  PubMed  Google Scholar 

  25. Brossart P, Zobywalski A, Grunebach F, Behnke L, Stuhler G, Reichardt VL et al. Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T-cell stimulatory capacity of dendritic cells. Cancer Res 2000; 60: 4485–4492.

    CAS  PubMed  Google Scholar 

  26. Wright P, Braun R, Babiuk L, Littel-van den Hurk SD, Moyana T, Zheng C et al. Adenovirus-mediated TNF-alpha gene transfer induces significant tumor regression in mice. Cancer Biother Radiopharm 1999; 14: 49–57.

    Article  CAS  PubMed  Google Scholar 

  27. Xiang J, Huang H, Liu Y . A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 2005; 174: 7497–7505.

    Article  CAS  PubMed  Google Scholar 

  28. Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 2001; 166: 6099–6103.

    Article  CAS  PubMed  Google Scholar 

  29. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Ye T, Sun D, Maynard J, Deisseroth A . Conditionally replication-competent adenoviral vectors with enhanced infectivity for use in gene therapy of melanoma. Hum Gene Ther 2004; 15: 637–647.

    Article  CAS  PubMed  Google Scholar 

  31. Chan T, Sami A, El-Gayed A, Guo X, Xiang J . HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene ther 2006; 13: 1391–1402.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng M, Smith SK, Siegel F, Shi Z, Van Kampen KR, Elmets CA et al. AdEasy system made easier by selecting the viral backbone plasmid preceding homologous recombination. Biotechniques 2001; 31: 260–262.

    Article  CAS  PubMed  Google Scholar 

  33. Huang H, Liu Y, Xiang J . Synergistic effect of adoptive T-cell therapy and intratumoral interferon gamma-inducible protein-10 transgene expression in treatment of established tumors. Cell Immunol 2002; 217: 12–22.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Huang H, Chang T, Carsen S, Saxena A, Marr R et al. Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Ther 2002; 9: 778–786.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Huang H, Chen Z, Zong L, Xiang J . Dendritic cells engineered to express the Flt3 ligand stimulate type I immune response, and induce enhanced cytoxic T and natural killer cell cytotoxicities and antitumor immunity. J Gene Med 2003; 5: 668–680.

    Article  CAS  PubMed  Google Scholar 

  36. Xia D, Hao S, Xiang J . CD8+ cytotoxic T-APC stimulate central memory CD8+ T cell responses via acquired peptide-MHC class I complexes and CD80 costimulation and IL-2 secretion. J Immunol 2006; 177: 2976–2984.

    Article  CAS  PubMed  Google Scholar 

  37. Speiser DE, Romero P . Toward improved immunocompetence of adoptively transferred CD8+ T cells. J Clin Invest 2005; 115: 1467–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zammit DJ, Cauley LS, Pham QM, Lefrancois L . Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 2005; 22: 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dyer MR, Herrling PL . Progress and potential for gene-based medicines. Mol Ther 2000; 1: 213–224.

    Article  CAS  PubMed  Google Scholar 

  40. Marshall E . Gene therapy. Second child in French trial is found to have leukemia. Science 2003; 299: 320.

    Article  CAS  PubMed  Google Scholar 

  41. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  42. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  43. Nemerow GR . Cell receptors involved in adenovirus entry. Virology 2000; 274: 1–4.

    Article  CAS  PubMed  Google Scholar 

  44. Huang S, Endo RI, Nemerow GR . Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 1995; 69: 2257–2263.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang S, Kamata T, Takada Y, Ruggeri ZM, Nemerow GR . Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol 1996; 70: 4502–4508.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Okada N, Saito T, Masunaga Y, Tsukada Y, Nakagama S, Mizuguchi H et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res 2001; 61: 7913–7919.

    CAS  PubMed  Google Scholar 

  47. Okada N, Masunaga Y, Okada Y, Iiyama S, Mori N, Tsuda T et al. Gene transduction efficiency and maturation status in mouse bone marrow-derived dendritic cells infected with conventional or RGD fiber-mutant adenovirus vectors. Cancer Gene Ther 2003; 10: 421–431.

    Article  CAS  PubMed  Google Scholar 

  48. Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–530.

    Article  CAS  PubMed  Google Scholar 

  49. Huang H, Li F, Gordon JR, Xiang J . Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Res 2002; 62: 2043–2051.

    CAS  PubMed  Google Scholar 

  50. Huang H, Bi XG, Yuan JY, Xu SL, Guo XL, Xiang J . Combined CD4+ Th1 effect and lymphotactin transgene expression enhance CD8+ Tc1 tumor localization and therapy. Gene Ther 2005; 12: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  51. Winter H, Hu HM, Urba WJ, Fox BA . Tumor regression after adoptive transfer of effector T cells is independent of perforin or Fas ligand (APO-1L/CD95L). J Immunol 1999; 163: 4462–4472.

    CAS  PubMed  Google Scholar 

  52. Poehlein CH, Hu HM, Yamada J, Assmann I, Alvord WG, Urba WJ et al. TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. J Immunol 2003; 170: 2004–2013.

    Article  CAS  PubMed  Google Scholar 

  53. Hollenbaugh JA, Dutton RW . IFN-gamma regulates donor CD8 T cell expansion, migration, and leads to apoptosis of cells of a solid tumor. J Immunol 2006; 177: 3004–3011.

    Article  CAS  PubMed  Google Scholar 

  54. Blohm U, Potthoff D, van der Kogel AJ, Pircher H . Solid tumors ‘melt’ from the inside after successful CD8 T cell attack. Eur J Immunol 2006; 36: 468–477.

    Article  CAS  PubMed  Google Scholar 

  55. Prevost-Blondel A, Roth E, Rosenthal FM, Pircher H . Crucial role of TNF-alpha in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J Immunol 2000; 164: 3645–3651.

    Article  CAS  PubMed  Google Scholar 

  56. Sarraf C . Tumor necrosis factor and cell death in tumors. Int J Oncol 1994; 5: 1333–1339.

    CAS  PubMed  Google Scholar 

  57. Tracey KJ, Cerami A . Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 1994; 45: 491–503.

    Article  CAS  PubMed  Google Scholar 

  58. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ et al. Evidence for the involvement of endothelial cell integrin alpha V beta 3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 1998; 4: 408–414.

    Article  CAS  PubMed  Google Scholar 

  59. Denekamp J . Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 1993; 66: 181–196.

    Article  CAS  PubMed  Google Scholar 

  60. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE . TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006; 108: 253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  62. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 2001; 24: 363–373.

    Article  CAS  PubMed  Google Scholar 

  63. Sprent J, Tough DF . T cell death and memory. Science 2001; 293: 245–248.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang HG, Liu C, Su K, Yu S, Zhang L, Zhang S et al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol 2006; 176: 7385–7393.

    Article  CAS  PubMed  Google Scholar 

  65. Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW . Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol 2004; 172: 1380–1390.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants (MOP 67230/81228) of the Canadian Institutes of Health Research to JX. We thank Mark Boyd for his excellent technical support of flow cytometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Z., Shi, M., Chan, T. et al. Engineered CD8+ cytotoxic T cells with fiber-modified adenovirus-mediated TNF-α gene transfection counteract immunosuppressive interleukin-10-secreting lung metastasis and solid tumors. Cancer Gene Ther 14, 661–675 (2007). https://doi.org/10.1038/sj.cgt.7701039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701039

Keywords

This article is cited by

Search

Quick links