Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced T-cell immunity induced by dendritic cells with phagocytosis of heat shock protein 70 gene-transfected tumor cells in early phase of apoptosis

Abstract

The dual role of heat shock protein 70 (HSP70), as antigenic peptide chaperone and danger signal, makes it especially important in dendritic cell (DC)-based vaccination. In this study, we investigated the impacts of apoptotic transgenic MCA/HSP tumor cells expressing HSP70 on DC maturation, T-cell stimulation and vaccine efficacy. We found that DCs with phagocytosis of MCA/HSP in early phase of apoptosis expressed more pMHC I complexes, stimulated stronger cytotoxic T lymphocyte (CTL) responses (40% specific killing at an E:T cell ratio of 50) and induced immune protection in 90% of mice against MCA tumor cell challenge, compared with 25% specific CTL killing activity and 60% immune protection seen in mice immunized with DC with phagocytosis of MCA/HSP in late phase of apoptosis (P<0.05). Similar results were confirmed in another EG7 tumor model also expressing HSP70. Taken together, our data demonstrate that HSP70 on apoptotic tumor cells stimulate DC maturation, and DC with phagocytosis of apoptotic tumor cells expressing HSP70 in early phase of apoptosis more efficiently induced tumor-specific CTL responses and immunity than DCs with phagocytosis of apoptotic tumor cells in late phase of apoptosis. These results may have an important impact in designing DC-based antitumor vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  2. Sallusto F, Cella M, Danieli C, Lanzavecchia A . Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995; 182: 389–400.

    Article  CAS  Google Scholar 

  3. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M . Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 1999; 189: 371–380.

    Article  CAS  Google Scholar 

  4. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M . The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000; 151: 673–684.

    Article  CAS  Google Scholar 

  5. Matzinger P . Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991–1045.

    Article  CAS  Google Scholar 

  6. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89.

    Article  CAS  Google Scholar 

  7. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL . Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188: 1359–1368.

    Article  CAS  Google Scholar 

  8. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM . A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405: 85–90.

    Article  CAS  Google Scholar 

  9. Basu S, Binder RJ, Ramalingam T, Srivastava PK . CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14: 303–313.

    Article  CAS  Google Scholar 

  10. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K . Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002; 17: 353–362.

    Article  CAS  Google Scholar 

  11. Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Gregoire M . Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res 1999; 59: 3329–3332.

    CAS  PubMed  Google Scholar 

  12. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N . Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191: 423–434.

    Article  CAS  Google Scholar 

  13. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK . Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12: 1539–1546.

    Article  CAS  Google Scholar 

  14. Kotera Y, Shimizu K, Mule JJ . Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 2001; 61: 8105–8109.

    CAS  PubMed  Google Scholar 

  15. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM . Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 2003; 103: 205–211.

    Article  CAS  Google Scholar 

  16. Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R . Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol 2003; 171: 5940–5947.

    Article  CAS  Google Scholar 

  17. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM . Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101: 890–898.

    Article  CAS  Google Scholar 

  18. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I . Immunosuppressive effects of apoptotic cells. Nature 1997; 390: 350–351.

    Article  CAS  Google Scholar 

  19. Steinman RM, Turley S, Mellman I, Inaba K . The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191: 411–416.

    Article  CAS  Google Scholar 

  20. Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM . Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002; 196: 1091–1097.

    Article  CAS  Google Scholar 

  21. Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H . Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 1999; 96: 2233–2238.

    Article  CAS  Google Scholar 

  22. Ponner BB, Stach C, Zoller O, Hagenhofer M, Voll R, Kalden JR . Induction of apoptosis reduces immunogenicity of human T-cell lines in mice. Scand J Immunol 1998; 47: 343–347.

    Article  CAS  Google Scholar 

  23. Thompson CB . Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Article  CAS  Google Scholar 

  24. Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J . Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 2001; 93: 539–548.

    Article  CAS  Google Scholar 

  25. Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C . Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 2001; 166: 6099–6103.

    Article  CAS  Google Scholar 

  26. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN . Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 1997; 6: 715–726.

    Article  CAS  Google Scholar 

  27. Chen Z, Huang H, Chang T, Carlsen S, Saxena A, Marr R . Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Ther 2002; 9: 778–786.

    Article  CAS  Google Scholar 

  28. Chen Z, Xia D, Bi X, Saxena A, Sidhu N, El-Gayed A . Combined radiation therapy and dendritic cell vaccine for treating solid tumors with liver micro-metastasis. J Gene Med 2005; 7: 506–517.

    Article  CAS  Google Scholar 

  29. Xiang J, Huang H, Liu Y . A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 2005; 174: 7497–7505.

    Article  CAS  Google Scholar 

  30. Chen Z, Gordon JR, Zhang X, Xiang J . Analysis of the gene expression profiles of immature versus mature bone marrow-derived dendritic cells using DNA arrays. Biochem Biophys Res Commun 2002; 290: 66–72.

    Article  CAS  Google Scholar 

  31. Inaba K, Young JW, Steinman RM . Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987; 166: 182–194.

    Article  CAS  Google Scholar 

  32. Guan B, Yue P, Clayman GL, Sun SY . Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 2001; 188: 98–105.

    Article  CAS  Google Scholar 

  33. Friedman EJ . Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des 2002; 8: 1765–1780.

    Article  CAS  Google Scholar 

  34. Schumacher B, Hofmann K, Boulton S, Gartner A . The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 2001; 11: 1722–1727.

    Article  CAS  Google Scholar 

  35. Medzhitov R, Janeway Jr CA . Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295–298.

    Article  CAS  Google Scholar 

  36. Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N . Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 2001; 167: 4844–4852.

    Article  CAS  Google Scholar 

  37. Feng H, Zeng Y, Whitesell L, Katsanis E . Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 2001; 97: 3505–3512.

    Article  CAS  Google Scholar 

  38. DeLeo AB, Srivastava PK . Cell surface antigens of chemically induced sarcomas of murine origin. Cancer Surv 1985; 4: 21–34.

    CAS  PubMed  Google Scholar 

  39. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK . Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997; 278: 117–120.

    Article  CAS  Google Scholar 

  40. Kovalchin JT, Murthy AS, Horattas MC, Guyton DP, Chandawarkar RY . Determinants of efficacy of immunotherapy with tumor-derived heat shock protein gp96. Cancer Immun 2001; 1: 7.

    CAS  PubMed  Google Scholar 

  41. Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK . Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000; 88: 232–238.

    Article  CAS  Google Scholar 

  42. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR . Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96®-peptide complexes: clinical and immunologic findings. J Clin Oncol 2002; 20: 4169–4180.

    Article  CAS  Google Scholar 

  43. Roman E, Moreno C . Synthetic peptides non-covalently bound to bacterial hsp 70 elicit peptide-specific T-cell responses in vivo. Immunology 1996; 88: 487–492.

    Article  CAS  Google Scholar 

  44. Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S . Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 1997; 186: 1315–1322.

    Article  CAS  Google Scholar 

  45. Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave JP . Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 2002; 32: 3708–3713.

    Article  CAS  Google Scholar 

  46. Gao B, Tsan MF . Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 2003; 278: 174–179.

    Article  CAS  Google Scholar 

  47. Todryk S, Melcher AA, Hardwick N, Linardakis E, Bateman A, Colombo MP . Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 1999; 163: 1398–1408.

    CAS  PubMed  Google Scholar 

  48. Wang XY, Li Y, Manjili MH, Repasky EA, Pardoll DM, Subjeck JR . Hsp110 overexpression increases the immunogenicity of the murine CT26 colon tumor. Cancer Immunol Immunother 2002; 51: 311–319.

    Article  CAS  Google Scholar 

  49. Jaattela M . Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 1995; 60: 689–693.

    Article  CAS  Google Scholar 

  50. Jaattela M . Escaping cell death: survival proteins in cancer. Exp Cell Res 1999; 248: 30–43.

    Article  CAS  Google Scholar 

  51. Zheng H, Dai J, Stoilova D, Li Z . Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol 2001; 167: 6731–6735.

    Article  CAS  Google Scholar 

  52. Chen X, Tao Q, Yu H, Zhang L, Cao X . Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 2002; 84: 81–87.

    Article  CAS  Google Scholar 

  53. Flohe SB, Bruggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohe S . Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 2003; 170: 2340–2348.

    Article  CAS  Google Scholar 

  54. Millar DG, Garza KM, Odermatt B, Elford AR, Ono N, Li Z . Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 2003; 9: 1469–1476.

    Article  CAS  Google Scholar 

  55. Wan T, Zhou X, Chen G, An H, Chen T, Zhang W . Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 2004; 103: 1747–1754.

    Article  CAS  Google Scholar 

  56. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE . Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277: 15028–15034.

    Article  CAS  Google Scholar 

  57. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P . The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 2002; 277: 20847–20853.

    Article  CAS  Google Scholar 

  58. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW . HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6: 435–442.

    Article  CAS  Google Scholar 

  59. Chandawarkar RY, Wagh MS, Srivastava PK . The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 1999; 189: 1437–1442.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants (MOP 63259 and 67230) from the Canadian Institute of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, T., Chen, Z., Hao, S. et al. Enhanced T-cell immunity induced by dendritic cells with phagocytosis of heat shock protein 70 gene-transfected tumor cells in early phase of apoptosis. Cancer Gene Ther 14, 409–420 (2007). https://doi.org/10.1038/sj.cgt.7701025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701025

Keywords

This article is cited by

Search

Quick links