Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Electrogene therapy using endostatin, with or without suicide gene therapy, suppresses murine mammary tumor growth and metastasis

Abstract

Syngeneic inoculated metastatic mammary cancers received direct intratumoral injection of a plasmid vector containing either endostatin (pEndo) with or without a suicide gene (pHSVtk), pHSVtk alone or control vector once a week for 8 weeks. We applied electrogene transfer to the tumors after each injection and administered ganciclovir (GCV) to pHSVtk-transfected mice using an osmotic minipump. Anticancer efficacy was monitored using a variety of parameters, namely tumor volume, intratumoral microvessel density and DNA synthesis, number of mice with metastasis, and number of sites of metastasis per mouse. Tumor volume was significantly lower in all therapeutic groups, with the most effective growth suppression in the pEndo+pHSVtk/GCV group. Lymph node metastasis was significantly less frequent in all therapeutic groups, whereas the multiplicity of lung metastases was significantly lower only in the pEndo and pEndo+pHSVtk/GCV groups. All therapeutic groups showed significantly lower intratumor microvessel density and DNA synthesis. The pEndo and pEndo+pHSVtk/GCV groups also showed a significant reduction in the numbers of dilated lymphatic vessels containing intralumenal tumor cells. Our data suggest that endostatin electrogene therapy alone or in combination with pHSVtk/GCV suicide gene therapy is more beneficial than suicide gene therapy alone. The observed antimetastatic activity of endostatin may be of high clinical significance in the treatment of metastatic breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

HSVtk:

herpes simplex virus 1 thymidine kinase

HUVECs:

human umbilical vein endothelial cells

PI:

propidium iodide

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling

vWF:

von Willebrand factor

References

  1. Kuroishi T, Tominaga S . Epidemiol. Breast Cancer. Jpn J Cancer Chemother 2001; 28: 168–173.

    CAS  Google Scholar 

  2. Jemal A, Thomas A, Murray T, Thun M . Cancer statistics, 2002. CA Cancer J Clin 2002; 52: 23–47.

    Article  PubMed  Google Scholar 

  3. Folkman J . Angiogenesis-dependent diseases. Semin Oncol 2001; 28: 536–542.

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  PubMed  Google Scholar 

  5. Folkman J . Antiangiogenic gene therapy. Proc Natl Acad Sci USA 1998; 95: 9064–9066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feldman AL, Libutti SK . Progress in antiangiogenic gene therapy of cancer. Cancer 2000; 89: 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  7. Folkman J . Endogenous angiogenesis inhibitors. Apmis 2004; 112: 496–507.

    Article  CAS  PubMed  Google Scholar 

  8. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  PubMed  Google Scholar 

  9. Korpelainen EI, Alitalo K . Signaling angiogenesis and lymphangiogenesis. Curr Opin Cell Biol 1998; 10: 159–164.

    Article  CAS  PubMed  Google Scholar 

  10. Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo C et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001; 98: 1024–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moolten I . Drug sensitivity (‘suicide’) genes for selective cancer therapy. Cancer Gene Ther 1994; 1: 107–112.

    Google Scholar 

  12. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM . In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  13. Shibata MA, Morimoto J, Otsuki Y . Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther 2002; 9: 16–27.

    Article  CAS  PubMed  Google Scholar 

  14. Titomirov AV, Sukharev S, Kistanova E . In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088: 131–134.

    Article  CAS  PubMed  Google Scholar 

  15. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Shin B, Fujikura K, Matsuzaki T, Takata K . Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 1998; 425: 436–440.

    Article  CAS  PubMed  Google Scholar 

  17. Harimoto K, Sugumura K, Lee C, Kuratsukuri K, Kishimoto T . In vivo gene transfer methods in the bladder without viral vectors. Br J Urol 1998; 81: 870–874.

    Article  CAS  PubMed  Google Scholar 

  18. Harrison R, Byrne BJ, Tung L . Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 1998; 435: 1–5.

    Article  CAS  PubMed  Google Scholar 

  19. Goto T, Nishi T, Tamura T, Dev SB, Takeshima H, Kochi M et al. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 2000; 97: 354–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y et al. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res 2001; 61: 3281–3284.

    CAS  PubMed  Google Scholar 

  21. Yamashita Y, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 2001; 61: 1005–1012.

    CAS  PubMed  Google Scholar 

  22. Shibata MA, Horiguchi T, Morimoto J, Otsuki Y . Massive apoptotic cell death in chemically induced rat urinary bladder carcinomas following in situ HSVtk electrogene transfer. J Gene Med 2003; 5: 219–231.

    Article  CAS  PubMed  Google Scholar 

  23. Shibata MA, Miwa Y, Miyashita M, Morimoto J, Abe H, Otsuki Y . Electrogene transfer of an Epstein–Barr virus-based plasmid replicon vector containing the diphtheria toxin A gene suppresses mammary carcinoma growth in SCID mice. Cancer Sci 2005; 96: 434–440.

    Article  CAS  PubMed  Google Scholar 

  24. Shibata MA, Ito Y, Morimoto J, Kusakabe K, Yoshinaka R, Otsuki Y . In vivo electrogene transfer of interleukin-12 inhibits tumor growth and lymph node and lung metastasis in mouse mammary carcinomas. J Gene Med 2006; 8: 335–352.

    Article  CAS  PubMed  Google Scholar 

  25. Morimoto J, Imai S, Haga S, Iwai Y, Iwai M, Hiroishi S et al. New murine mammary tumor cell lines. In vitro Cell Dev Biol 1991; 27A: 349–351.

    Article  CAS  PubMed  Google Scholar 

  26. Shibata MA, Ito Y, Morimoto J, Otsuki Y . Lovastatin inhibits tumor growth and lung metastasis in mouse mammary carcinoma model: a p53-independent mitochondrial-mediated apoptotic mechanism. Carcinogenesis 2004; 25: 1887–1898.

    Article  CAS  PubMed  Google Scholar 

  27. Shibata MA, Liu M-L, Knudson MC, Shibata E, Yoshidome K, Bandy T et al. Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 1999; 18: 2692–2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorrin-Rivas MJ, Arii S, Furutani M, Mizumoto M, Mori A, Hanaki K et al. Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 2000; 6: 1647–1654.

    CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  30. Carter CL, Allen C, Henson DE . Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989; 63: 181–187.

    Article  CAS  PubMed  Google Scholar 

  31. Kim YM, Hwang S, Pyun BJ, Kim TY, Lee ST, Gho YS et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002; 277: 27872–27879.

    Article  CAS  PubMed  Google Scholar 

  32. Kisker O, Becker CM, Prox D, Fannon M, D’Amato R, Flynn E et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 2001; 61: 7669–7674.

    CAS  PubMed  Google Scholar 

  33. Mundhenke C, Thomas JP, Wilding G, Lee FT, Kelzc F, Chappell R et al. Tissue examination to monitor antiangiogenic therapy: a phase I clinical trial with endostatin. Clin Cancer Res 2001; 7: 3366–3374.

    CAS  PubMed  Google Scholar 

  34. Thomas JP, Arzoomanian RZ, Alberti D, Marnocha R, Lee F, Friedl A et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2003; 21: 223–231.

    Article  CAS  PubMed  Google Scholar 

  35. Klatzmann D, Valery CA, Bensimon G, Marro B, Boyer O, Mokhtari K et al. A phase I/II study of herpes simplex virus type I thymidine kinase ‘suicide’ gene therapy for recurrent glioblastoma. Hum Gene Ther 1998; 9: 2595–2604.

    CAS  PubMed  Google Scholar 

  36. Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimbe K et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther 1998; 9: 1083–1092.

    Article  CAS  PubMed  Google Scholar 

  37. Shalev M, Kadmon D, Teh BS, Butler E, Aguilar-Cordova E, Thompson TC et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J Urol 2000; 163: 1747–1750.

    Article  CAS  PubMed  Google Scholar 

  38. Kuriyama S, Kikukawa M, Masui K, Okuda H, Nakatani T, Akahane T et al. Cancer gene therapy with HSV-tk/GCV system depends on T-cell-mediated immune responses and causes apoptotic death of tumor cells in vivo. Int J Cancer 1999; 83: 374–380.

    Article  CAS  PubMed  Google Scholar 

  39. Shibata MA, Morimoto J, Ito Y, Kusakabe K, Otsuki Y . Experimental gene therapy in mammary and urinary bladder cancer using electrogene transfer. Med Electron Microsc 2004; 37: 216–224.

    Article  CAS  PubMed  Google Scholar 

  40. Colombo MP, Trinchieri G . Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 155–168.

    Article  CAS  PubMed  Google Scholar 

  41. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J Immunol 1994; 153: 1697–1706.

    CAS  PubMed  Google Scholar 

  42. Uesato M, Gunji Y, Tomonaga T, Miyazaki S, Shiratori T, Matsubara H et al. Synergistic antitumor effect of antiangiogenic factor genes on colon 26 produced by low-voltage electroporation. Cancer Gene Ther 2004; 11: 625–632.

    Article  CAS  PubMed  Google Scholar 

  43. Pulkkanen KJ, Laukkanen JM, Fuxe J, Kettunen MI, Rehn M, Kannasto JM et al. The combination of HSV-tk and endostatin gene therapy eradicates orthotopic human renal cell carcinomas in nude mice. Cancer Gene Ther 2002; 9: 908–916.

    Article  CAS  PubMed  Google Scholar 

  44. Abdollahi A, Lipson KE, Sckell A, Zieher H, Klenke F, Poerschke D et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 2003; 63: 8890–8898.

    CAS  PubMed  Google Scholar 

  45. Salven P, Lymboussaki A, Heikkila P, Jaaskela-Saari H, Enholm B, Aase K et al. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998; 153: 103–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154: 1381–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566–3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brockstedt DG, Diagana M, Zhang Y, Tran K, Belmar N, Meier M et al. Development of anti-tumor immunity against a non-immunogenic mammary carcinoma through in vivo somatic GM-CSF, IL-2, and HSVtk combination gene therapy. Mol Ther 2002; 6: 627–636.

    CAS  PubMed  Google Scholar 

  49. Cichon T, Jamrozy L, Glogowska J, Missol-Kolka E, Szala S . Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther 2002; 9: 771–777.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Deborah E Devor-Henneman for critical review of the paper and Ms Hidemi Hiyama for warm-hearted secretarial assistance. This investigation was supported, in part, by the Development of Characteristic Education Grant from the Japan Private School Promotion Foundation (to MA Shibata), with main support from a Grant-in-Aid for Scientific Research (C)(2) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 15591368 to MA Shibata) and from a High-Tech Research Center Grant to Osaka Medical College from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-A Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, MA., Morimoto, J., Doi, H. et al. Electrogene therapy using endostatin, with or without suicide gene therapy, suppresses murine mammary tumor growth and metastasis. Cancer Gene Ther 14, 268–278 (2007). https://doi.org/10.1038/sj.cgt.7701009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701009

Keywords

This article is cited by

Search

Quick links