Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors

Abstract

Lack of effective therapy of primary brain tumors has promoted the development of novel experimental approaches utilizing oncolytic viruses combined with gene therapy. Towards this end, we have assessed a conditionally replication-competent, γ134.5-deleted herpes simplex virus type 1 (HSV-1) expressing cytosine deaminase (CD) for treatment of malignant brain tumors. Our results are summarized as follows: (i) a recombinant HSV (M012) was constructed in which both copies of the γ134.5 gene were replaced with the bacterial CD gene, under the control of the cellular promoter Egr-1; (ii) M012-infected cells in vitro efficiently convert 5-fluorocytosine (5-FC) to 5-fluorouracil, thereby enhancing cytotoxicity of neighboring, uninfected cells; (iii) both direct and bystander cytotoxicity of murine neuroblastoma and human glioma cell lines after infection with M012 were demonstrated; (iv) direct intracerebral inoculation of A/J mice demonstrated lack of neurotoxicity at doses similar to G207, a γ134.5-deleted HSV with demonstrated safety in human patient trials and (v) intratumoral injection of M012 into Neuro-2a flank tumors in combination with 5-FC administration significantly reduced tumor growth versus tumors treated with R3659 combined with 5-FC, or treated with M012 alone. Thus, M012 is a promising new oncolytic HSV vector with an enhanced prodrug-mediated, antineoplastic effect that is safe for intracranial administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Levin AL, Sheline GE, Gutin PH In: Devita VT, Hellman S, Rosenberg SA (eds). Neoplasms of the central nervous system. Cancer: Principles and Practice of Oncology. Lippincott: Philadelphia, PA, 1989, pp 1557–1611.

    Google Scholar 

  2. Schoenberg BS . In: Walker MD (ed). Epidemiology of central nervous system tumors. Oncology of the Nervous System. Nijhoff: Boston, MA, 1983, pp 1–30.

    Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  4. Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ . Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 2000; 10: 17–30.

    Article  CAS  PubMed  Google Scholar 

  5. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  6. Taha MY, Clements GB, Brown SM . The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. J Gen Virol 1989; 70 (Part 11): 3073–3078.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson RL, Rogers SK, Zerhusen MA . Herpes simplex virus neurovirulence and productive infection of neural cells is associated with a function which maps between 0, 82 and 0.832 map units on the HSV genome. Virology 1989; 172: 435–450.

    Article  CAS  PubMed  Google Scholar 

  8. Markert JM, Malick A, Coen DM, Martuza RL . Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 1993; 32: 597–603.

    Article  CAS  PubMed  Google Scholar 

  9. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  10. Yazaki T, Manz HJ, Rabkin SD, Martuza RL . Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res 1995; 55: 4752–4756.

    CAS  PubMed  Google Scholar 

  11. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther 1998; 9: 2177–2185.

    Article  CAS  PubMed  Google Scholar 

  12. Mineta T, Markert JM, Takamiya Y, Coen DM, Rabkin SD, Martuza RL . CNS tumor therapy by attenuated herpes simplex viruses. Gene Therapy 1994; 1 (Suppl 1): S78.

    PubMed  Google Scholar 

  13. Chambers R, Gillespie GY, Soroceanu L, Andreansky S, Chatterjee S, Chou J et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci USA 1995; 92: 1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andreansky S, Soroceanu L, Flotte ER, Chou J, Markert JM, Gillespie GY et al. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res 1997; 57: 1502–1509.

    CAS  PubMed  Google Scholar 

  15. Markert JM, Parker JN, Gillespie GY, Whitley RJ . Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes 2001; 8: 17–22.

    CAS  PubMed  Google Scholar 

  16. Andreansky S, He B, van Cott J, McGhee J, Markert JM, Gillespie GY et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Therapy 1998; 5: 121–130.

    Article  CAS  PubMed  Google Scholar 

  17. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM . Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000; 97: 2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bennett JJ, Malhotra S, Wong RJ, Delman K, Zager J, St-Louis M et al. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann Surg 2001; 233: 819–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chabner B, Allegra CJ, Curt GA, Calabresi P . Antineoplastic agents. In: Hardman JG et al. (eds). Goodman and Gilman's The Pharmacological Basis of Therapeutics. McGraw-Hill: New York, NY, 1996, pp 1233–1287.

    Google Scholar 

  20. Bennett J . Antimicrobial agents. Antifungal agents. In: Hardman JG et al. (eds). Goodman and Gilman's The Pharmacological Basis of Therapeutics. McGraw-Hill: New York, 1996, pp 1175–1190.

    Google Scholar 

  21. Huber BE, Austin EA, Richards CA, Davis ST, Good SS . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerosa MA, Dougherty DV, Wilson CB, Rosenblum ML . Improved treatment of a brain-tumor model. Part 2: Sequential therapy with BCNU and 5-fluorouracil. J Neurosurg 1983; 58: 368–373.

    Article  CAS  PubMed  Google Scholar 

  23. Paillard F . Bystander effects in enzyme/prodrug gene therapy. Hum Gene Ther 1997; 8: 1733–1735.

    Article  CAS  PubMed  Google Scholar 

  24. Kuriyama S, Masui K, Sakamoto T, Nakatani T, Kikukawa M, Tsujinoue H et al. Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil. Anticancer Res 1998; 18: 3399–3406.

    CAS  PubMed  Google Scholar 

  25. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  26. Cocchi F, Menotti L, Mirandola P, Lopez M, Campadelli-Fiume G . The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol 1998; 72: 9992–10002.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Post LE, Roizman B . A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell 1981; 25: 227–232.

    Article  CAS  PubMed  Google Scholar 

  28. Lagunoff M, Roizman B . The regulation of synthesis and properties of the protein product of open reading frame P of the herpes simplex virus 1 genome. J Virol 1995; 69: 3615–3623.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: A negative selection system. Proc Natl Acad Sci USA 1992; 89: 33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andersen L, Kilstrup M, Neuhard J . Pyrimidine, purine and nitrogen control of cytosine deaminase synthesis in Escherichia coli K 12. Involvement of the glnLG and purR genes in the regulation of codA expression. Arch Microbiol 1989; 152: 115–118.

    Article  CAS  PubMed  Google Scholar 

  31. Skibber JM, Minsky BD, Hoff PM . Cancer of the colon. In: Devita VT, Hellman S, Rosenberg SA (eds). Cancer: Principles and Practices of Oncology. Lippincott, Williams and Wilkins: Philadelphia, PA, 2001, pp 1216–1270.

    Google Scholar 

  32. Parker JN, Meleth S, Hughes KB, Gillespie GY, Whitley RJ, Markert JM . Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther 2005; 12: 359–368.

    Article  CAS  PubMed  Google Scholar 

  33. Hellums EK, Markert JM, Parker JN, He B, Perbal B, Roizman B et al. Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro-oncology 2005; 7: 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cocchi F, Lopez M, Menotti L, Aoubala M, Dubreuil P, Campadelli-Fiume G . The V domain of herpes virus Ig-like receptor (HIgR) contains a major functional region in herpes simplex virus-1 entry into cells and interacts physically with the viral glycoprotein D. Proc Natl Acad Sci USA 1998; 95: 15700–15705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sotos GA, Grogan L, Allegra CJ . Preclinical and clinical aspects of biomodulation of 5-fluorouracil. Cancer Treat Rev 1994; 20: 11–49.

    Article  CAS  PubMed  Google Scholar 

  36. Schmoll HJ, Buchele T, Grothey A, Dempke W . Where do we stand with 5-fluorouracil? Semin Oncol 1999; 26: 589–605.

    CAS  PubMed  Google Scholar 

  37. Levin VA, Leibel SA, Gutin PH . Neoplasms of the central nervous system. In: Devita VT, Hellman S, Rosenberg SA (eds). Cancer: Principles and Practice of Oncology. Lippincott Williams Wilkins: Philadelphia, PA, 2001, pp 2100–2160.

    Google Scholar 

  38. Patchell RA . Chemotherapy of Primary Brain Tumors. In: Perry MC (ed). The Chemotherapy Source Book. Williams Wilkins: Baltimore, MD, 1996, pp 1071–1081.

    Google Scholar 

  39. Mahaley Jr MS . Neuro-oncology index and review (adult primary brain tumors). Radiotherapy, chemotherapy, immunotherapy, photodynamic therapy. J Neurooncol 1991; 11: 85–147.

    Article  PubMed  Google Scholar 

  40. Miller CR, Williams CR, Buchsbaum DJ, Gillespie GY . Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Res 2002; 62: 773–780.

    CAS  PubMed  Google Scholar 

  41. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy. J Clin Invest 2000; 105: 1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pederson LC, Buchsbaum DJ, Vickers SM, Kancharla SR, Mayo MS, Curiel DT et al. Molecular chemotherapy combined with radiation therapy enhances killing of cholangiocarcinoma cells in vitro and in vivo. Cancer Res 1997; 57: 4325–4332.

    CAS  PubMed  Google Scholar 

  43. Mullen CA, Coale MM, Lowe R, Blaese RM . Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 1994; 54: 1503–1506.

    CAS  PubMed  Google Scholar 

  44. Gnant MF, Puhlmann M, Alexander Jr HR, Bartlett DL . Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res 1999; 59: 3396–3403.

    CAS  PubMed  Google Scholar 

  45. McCart JA, Puhlmann M, Lee J, Hu Y, Libutti SK, Alexander HR et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Therapy 2000; 7: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  46. Shirakawa T, Gardner TA, Ko SC, Bander N, Woo S, Gotoh A et al. Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine gene therapy is superior to thymidine kinase plus acyclovir in a human renal cell carcinoma model. J Urol 1999; 162: 949–954.

    Article  CAS  PubMed  Google Scholar 

  47. Denning C, Pitts JD . Bystander effects of different enzyme–prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum Gene Ther 1997; 8: 1825–1835.

    Article  CAS  PubMed  Google Scholar 

  48. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  49. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Therapy 2001; 8: 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  50. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura H, Mullen JT, Chandrasekhar S, Pawlik TM, Yoon SS, Tanabe KK . Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res 2001; 61: 5447–5452.

    CAS  PubMed  Google Scholar 

  52. Moriuchi S, Wolfe D, Tamura M, Yoshimine T, Miura F, Cohen JB et al. Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model. Gene Therapy 2002; 9: 584–591.

    Article  CAS  PubMed  Google Scholar 

  53. Lopez C . Genetics of natural resistance to herpesvirus infections in mice. Nature 1975; 258: 152–153.

    Article  CAS  PubMed  Google Scholar 

  54. Macklis JD, Madison RD . Neuroblastoma grafts are noninvasively removed within mouse neocortex by selective laser activation of intracellular photolytic chromophore. J Neurosci 1991; 11: 2055–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bernard Roizman, University of Chicago, for the parent virus R3659 and for many useful discussions. We also thank Cammy Love, Karen Mardis, Kathleen Price, Huey Nguyen and Suman Bharara for technical assistance. Studies performed by the authors were initiated and supported in part by NCI P01 CA 71933 (RJW), and the NINDS Mentored Clinical Scientist Development Award (1K08NSO1942) (JMM). Studies by MBG were initiated and supported in part by an NIH-sponsored Summer Research Fellowship Program (NHLBI T35 HL07473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Markert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guffey, M., Parker, J., Luckett, W. et al. Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors. Cancer Gene Ther 14, 45–56 (2007). https://doi.org/10.1038/sj.cgt.7700978

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700978

Keywords

This article is cited by

Search

Quick links