Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of von Hippel-Lindau tumor suppressor protein and antisense HIF-1α eradicates gliomas

Abstract

The von Hippel–Lindau tumor suppressor protein (pVHL) suppresses tumor formation by binding the α subunits of hypoxia-inducible-factors responsible for stimulating tumor angiogenesis and glycolysis, and targeting them for ubiquitination and proteasomal destruction. Loss of pVHL leads to tumorigenesis and development of sporadic renal cell carcinomas and central nervous system hemangioblastomas. In the present study, we investigated whether engineered overexpression of pVHL in C6 glioma cells, which already express endogenous pVHL, would suppress the tumorigenicity of this particular tumor cell type. C6 cells overexpressing VHL displayed a reduced growth rate (70% inhibition) compared to the parental cell line when subcutaneously implanted in athymic (nu/nu) mice. Growth inhibition was associated with a 50% reduction in the number of tumor vessels and a 60% increase in tumor cell apoptosis, due in part to downregulation of HIF-1, VEGF, and the antiapoptotic factor Bcl-2, respectively. Gene transfer of VHL suppressed the growth of established C6 gliomas, and synergized with antisense HIF-1 to completely eradicate tumors. The data suggest that VHL gene therapy and/or agents that increase VHL expression could have utility in the treatment of gliomas, particularly when combined with agents that inhibit the expression or function of HIF-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Avgeropoulos NG, Batchelor TT . New treatment strategies for malignant gliomas. Oncologist 1999; 4: 209–224.

    CAS  PubMed  Google Scholar 

  2. Murata H, Tajima N, Nagashima Y, Yao M, Baba M, Goto M et al. Von Hippel-Lindau tumor suppressor protein transforms human neuroblastoma cells into functional neuron-like cells. Cancer Res 2002; 62: 7004–7011.

    CAS  PubMed  Google Scholar 

  3. Kanno H, Kondo K, Ito S, Yamamoto I, Fujii S, Torigoe S et al. Somatic mutations of the von Hippel–Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res 1994; 54: 4845–4847.

    CAS  PubMed  Google Scholar 

  4. Kuwai T, Kitadai Y, Tanaka S, Hiyama T, Tanimoto K, Chayama K . Mutation of the von Hippel–Lindau (VHL) gene in human colorectal carcinoma: association with cytoplasmic accumulation of hypoxia-inducible factor (HIF)-1alpha. Cancer Sci 2004; 95: 149–153.

    Article  CAS  Google Scholar 

  5. Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW et al. Indentification of the von Hippel–Lindau tumor suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 1999; 96: 12436–12441.

    Article  CAS  Google Scholar 

  6. Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W . The von Hippel–Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999; 13: 1822–1833.

    Article  CAS  Google Scholar 

  7. Krek W . VHL takes HIF's breath away. Nat Cell Biol 2000; 2: E1–E3.

    Article  Google Scholar 

  8. Blancher C, Harris AL . The molecular basis of the hypoxia response pathway: Tumor hypoxia as a therapy target. Cancer Metastasis Rev 1998; 17: 187–194.

    Article  CAS  Google Scholar 

  9. Wang GL, Semenza GL . General involvement of hypoxia-inducible factor-1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90: 4304–4308.

    Article  CAS  Google Scholar 

  10. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic–helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  Google Scholar 

  11. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2000; 2: 423–427.

    Article  CAS  Google Scholar 

  12. Yu F, White SB, Zhao Q, Lee FS . HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001; 98: 9630–9635.

    Article  CAS  Google Scholar 

  13. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL . Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996; 271: 17771–17778.

    Article  CAS  Google Scholar 

  14. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW . Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 1998; 201: 1153–1162.

    CAS  PubMed  Google Scholar 

  15. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529–32537.

    Article  CAS  Google Scholar 

  16. D'Angelo G, Duplan E, Vigne P, Frelin C . Cyclosporin A prevents the hypoxic adaptation by activating hypoxia-inducible factor-1 α Pro-564 hydroxylation. J Biol Chem 2003; 278: 15406–15411.

    Article  CAS  Google Scholar 

  17. Brown RC, Mark KS, Egleton RD, Huber JD, Burroughs AR, Davis TP . Protection against hypoxia-induced increase in blood brain barrier permeability: role of tight junction proteins and NFκB. J Cell Sci 2003; 116: 693–700.

    Article  CAS  Google Scholar 

  18. Shweiki D, Itin A, Soffer D, Keshet E . Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845.

    Article  CAS  Google Scholar 

  19. Ikeda E, Achen MG, Breier G, Risau W . Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995; 270: 19761–19766.

    Article  CAS  Google Scholar 

  20. Kanno H, Saljooque F, Yamamoto I, Hattori S, Yao M, Shuin T et al. Role of the von Hippel–Lindau tumor suppressor protein during neuronal differentiation. Cancer Res 2000; 60: 2820–2824.

    CAS  PubMed  Google Scholar 

  21. Kanno H, Shuin T, Yamamoto I, Ito S, Shinonaga M, Yoshida M et al. Somatic mutations of the von Hippel–Lindau tumor suppressor gene and loss of heterozygosity on chromosome 3p in human glial tumors. Cancer Res 1997; 57: 1035–1038.

    CAS  PubMed  Google Scholar 

  22. Sun X, Kanwar JR, Leung E, Vale M, Krissansen GW . Overexpressed von Hippel–Lindau tumor suppressor protein synergizes with anti-sense hypoxia inducible factor-1α to eradicate lymphomas. Gene Therapy 2003; 10: 2081–2089.

    Article  CAS  Google Scholar 

  23. Sun X, Leung E, Kanwar JR, Lehnert K, Wang D, Krissansen GW . Gene transfer of antisense hypoxia inducible factor-1α enhances the therapeutic efficacy of cancer immunotherapy. Gene Therapy 2001; 8: 638–645.

    Article  CAS  Google Scholar 

  24. Sawada M, Nakashima S, Banno Y, Yamakawa H, Takenaka K, Shinoda J et al. Influence of Bax or Bcl-2 overexpression on the ceramide-dependent apoptotic pathway in glioma cells. Oncogene 2000; 19: 3508–3520.

    Article  CAS  Google Scholar 

  25. Sur P, Sribnick EA, Wingrave JM, Nowak MW, Ray SK, Banik NL . Estrogen attenuates oxidative stress-induced apoptosis in C6 glial cells. Brain Res 2003; 971: 178–188.

    Article  CAS  Google Scholar 

  26. Appel E, Kazimirsky G, Ashkenazi E, Kim SG, Jacobson KA, Brodie C . Roles of BCL-2 and caspase 3 in the adenosine A3 receptor-induced apoptosis. J Mol Neurosci 2001; 17: 285–292.

    Article  CAS  Google Scholar 

  27. Schraml P, Hergovich A, Hatz F, Amin MB, Lim SD, Krek W et al. Relevance of nuclear and cytoplasmic von Hippel Lindau protein expression for renal carcinoma progression. Am J Pathol 2003; 163: 1013–1020.

    Article  CAS  Google Scholar 

  28. Lee S, Chen DY, Humphrey JS, Gnarra JR, Linehan WM, Klausner RD . Nuclear/cytoplasmic localization of the von Hippel–Lindau tumor suppressor gene product is determined by cell density. Proc Natl Acad Sci USA 1996; 93: 1770–1775.

    Article  CAS  Google Scholar 

  29. Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN et al. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 1999; 19: 1486–1497.

    Article  CAS  Google Scholar 

  30. Lewis MD, Roberts BJ . Role of nuclear and cytoplasmic localization in the tumour-suppressor activity of the von Hippel–Lindau protein. Oncogene 2003; 22: 3992–3997.

    Article  CAS  Google Scholar 

  31. Dixelius J, Larsson H, Sasaki T, Holmqvist K, Lu L, Engstrom A et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood 2000; 95: 3403–3411.

    CAS  Google Scholar 

  32. Rak JW, St Croix BD, Kerbel RS . Consequences of angiogenesis for tumour progression, metastasis and cancer therapy. Anti-Cancer Drugs 1995; 6: 3–18.

    Article  CAS  Google Scholar 

  33. Qi H, Ohh M . The von Hippel–Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res 2003; 63: 7076–7080.

    CAS  PubMed  Google Scholar 

  34. Massfelder T, Lang H, Schordan E, Lindner V, Rothhut S, Welsch S et al. Parathyroid hormone-related protein is an essential growth factor for human clear cell renal carcinoma and a target for the von Hippel-Lindau tumor suppressor gene. Cancer Res 2004; 64: 180–188.

    Article  CAS  Google Scholar 

  35. Bluyssen HA, Lolkema MP, van Beest M, Boone M, Snijckers CM, Los M et al. Fibronectin is a hypoxia-independent target of the tumor suppressor VHL. FEBS Lett 2004; 556: 137–142.

    Article  CAS  Google Scholar 

  36. Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN et al. The von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1998; 1: 959–968.

    Article  CAS  Google Scholar 

  37. Stickle NH, Chung J, Klco JM, Hill RP, Kaelin Jr WG, Ohh M . pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol 2004; 24: 3251–3261.

    Article  CAS  Google Scholar 

  38. Davidowitz EJ, Schoenfeld AR, Burk RD . VHL induces renal cell differentiation and growth arrest through integration of cell–cell and cell–extracellular matrix signaling. Mol Cell Biol 2001; 21: 865–874.

    Article  CAS  Google Scholar 

  39. Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel RS . Von Hippel–Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res 1998; 58: 4957–4962.

    CAS  PubMed  Google Scholar 

  40. Koochekpour S, Jeffers M, Wang PH, Gong C, Taylor GA, Roessler LM et al. The von Hippel–Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 1999; 19: 5902–5912.

    Article  CAS  Google Scholar 

  41. Pioli PA, Rigby WFC . The von Hippel–Lindau protein interacts with heteronuclear ribonucleoprotein A2 and regulates its expression. J Biol Chem 2001; 276: 40346–40352.

    Article  CAS  Google Scholar 

  42. Devarajan P, De Leon M, Talasazan F, Schoenfeld AR, Davidowitz EJ, Burk RD . The von Hippel–Lindau gene product inhibits renal cell apoptosis via Bcl-2-dependent pathways. J Biol Chem 2001; 276: 40599–40605.

    Article  CAS  Google Scholar 

  43. Datta K, Sundberg C, Karumanchi SA, Mukhopadhyay D . The 104–123 amino acid sequence of the beta-domain of von Hippel–Lindau gene product is sufficient to inhibit renal tumor growth and invasion. Cancer Res 2001; 61: 1768–1775.

    CAS  PubMed  Google Scholar 

  44. Qi H, Gervais ML, Li W, DeCaprio JA, Challis JR, Ohh M . Molecular cloning and characterization of the von Hippel–Lindau-like protein. Mol Cancer Res 2004; 2: 43–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from the National Natural Scientific Foundation of China (30100178, 30471681), the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry of China, the Wellcome Trust (UK), and the Health Research Council of New Zealand. X Sun and M Liu contributed equally to the work. X Sun is a recipient of a Wellcome Trust Research Leave Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Liu, M., Wei, Y. et al. Overexpression of von Hippel-Lindau tumor suppressor protein and antisense HIF-1α eradicates gliomas. Cancer Gene Ther 13, 428–435 (2006). https://doi.org/10.1038/sj.cgt.7700907

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700907

Keywords

This article is cited by

Search

Quick links