Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor suppressive efficacy through augmentation of tumor-infiltrating immune cells by intratumoral injection of chemokine-expressing adenoviral vector

Abstract

Our goal in the present study was to evaluate antitumor effects and frequency of tumor-infiltrating immune cells upon intratumoral injection of RGD fiber-mutant adenoviral vector (AdRGD) encoding the chemokines CCL17, CCL19, CCL20, CCL21, CCL22, CCL27, XCL1, and CX3CL1. Among eight kinds of chemokine-expressing AdRGDs, AdRGD-CCL19 injection most efficiently induced infiltration of T cells into established B16BL6 tumor parenchyma, whereas most of these T cells were perforin-negative in immunohistochemical analysis. Additionally, the growth of AdRGD-CCL19-injected tumors decreased only slightly as well as that of other tumors treated with each chemokine-expressing AdRGD, which indicated that accumulation of naive T cells in tumor tissue does not effectively damage the tumor cells. Tumor-bearing mice, in which B16BL6-specific T cells were elicited by dendritic cell-based immunization, demonstrated that intratumoral injection of AdRGD-CCL17, -CCL22, or -CCL27 could considerably suppress tumor growth and attract activated T cells. On the other hand, AdRGD-CCL19-injection in the immunized mice showed slight increase of tumor-infiltrating T cells compared to treatment using control vector. Collectively, although AdRGD-mediated chemokine gene transduction into established tumors would be very useful for augmentation of tumor-infiltrating immune cells, a combinational treatment that can systemically induce tumor-specific effector T cells is necessary for satisfactory antitumor efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AdRGD:

RGD fiber-mutant adenoviral vector

CTL:

cytotoxic T lymphocyte

DC:

dendritic cell

FBS:

fetal bovine serum

HE:

hematoxylin and eosin

IFN:

interferon

mAb:

monoclonal antibody

NK:

natural killer

PBS:

phosphate-buffered saline

PFU:

plaque-forming unit

RT-PCR:

reverse transcription-polymerase chain reaction

TAA:

tumor-associated antigen

Th:

helper T cell

References

  1. Urban JL, Schreiber H . Tumor antigens. Annu Rev Immunol 1992; 10: 617–644.

    Article  CAS  PubMed  Google Scholar 

  2. Mackensen A, Carcelain G, Viel S, Raynal MC, Michalaki H, Triebel F et al. Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J Clin Invest 1994; 93: 1397–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smyth MJ, Godfrey DI, Trapani JA . A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2: 293–299.

    Article  CAS  PubMed  Google Scholar 

  4. Tada T, Ohzeki S, Utsumi K, Takiuchi H, Muramatsu M, Li XF et al. Transforming growth factor-β-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 1991; 146: 1077–1082.

    CAS  PubMed  Google Scholar 

  5. Ohm JE, Carbone DP . VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 2001; 23: 263–272.

    Article  CAS  PubMed  Google Scholar 

  6. Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA . Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res 1986; 46: 2101–2104.

    CAS  PubMed  Google Scholar 

  7. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86: 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  8. Mandelboim O, Vadai E, Fridkin M, Katz-Hillel A, Feldman M, Berke G et al. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat Med 1995; 1: 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  9. Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res 2002; 8: 2782–2787.

    CAS  PubMed  Google Scholar 

  10. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 2002; 5: 609–616.

    Article  CAS  PubMed  Google Scholar 

  12. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995; 1: 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  13. Song W, Kong HL, Carpenter H, Torii H, Granstein R, Rafii S et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 1997; 186: 1247–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6: 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshie O, Imai T, Nomiyama H . Chemokines in immunity. Adv Immunol 2001; 78: 57–110.

    Article  CAS  PubMed  Google Scholar 

  16. Zlotnik A, Yoshie O . Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy PM . The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 1994; 12: 593–633.

    Article  CAS  PubMed  Google Scholar 

  18. Bokoch GM . Chemoattractant signaling and leukocyte activation. Blood 1995; 86: 1649–1660.

    CAS  PubMed  Google Scholar 

  19. Homey B, Muller A, Zlotnik A . Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2002; 2: 175–184.

    Article  CAS  PubMed  Google Scholar 

  20. Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164: 4558–4563.

    Article  CAS  PubMed  Google Scholar 

  21. Fushimi T, Kojima A, Moore MA, Crystal RG . Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest 2000; 105: 1383–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH et al. The CC chemokine CKβ-11/MIP-3β/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 2000; 164: 4025–4031.

    Article  CAS  PubMed  Google Scholar 

  23. Miyata T, Yamamoto S, Sakamoto K, Morishita R, Kaneda Y . Novel immunotherapy for peritoneal dissemination of murine colon cancer with macrophage inflammatory protein-1β mediated by a tumor-specific vector, HVJ cationic liposomes. Cancer Gene Ther 2001; 8: 852–860.

    Article  CAS  PubMed  Google Scholar 

  24. Guo J, Zhang M, Wang B, Yuan Z, Guo Z, Chen T et al. Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer 2003; 103: 212–220.

    Article  CAS  PubMed  Google Scholar 

  25. Gao J-Q, Tsuda Y, Katayama K, Nakayama T, Hatanaka Y, Tani Y et al. Antitumor effect by interleukin-11 receptor α-locus chemokine/CCL27, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res 2003; 63: 4420–4425.

    CAS  PubMed  Google Scholar 

  26. Okada N, Gao J-Q, Sasaki A, Niwa M, Okada Y, Nakayama T et al. Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host's immune system: implications for chemokine-based cancer immunotherapy. Biochem Biophys Res Commun 2004; 317: 68–76.

    Article  CAS  PubMed  Google Scholar 

  27. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Therapy 2001; 8: 730–735.

    Article  CAS  PubMed  Google Scholar 

  28. Okada N, Masunaga Y, Okada Y, Iiyama S, Mori N, Tsuda T et al. Gene transduction efficiency and maturation status in mouse bone marrow-derived dendritic cells infected with conventional or RGD fiber-mutant adenovirus vectors. Cancer Gene Ther 2003; 10: 421–431.

    Article  CAS  PubMed  Google Scholar 

  29. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther 1998; 9: 2577–2583.

    Article  CAS  PubMed  Google Scholar 

  30. Mizuguchi H, Kay MA . A simple method for constructing E1- and E1/E4-deleted recombinant adenoviral vectors. Hum Gene Ther 1999; 10: 2013–2017.

    Article  CAS  PubMed  Google Scholar 

  31. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999; 223: 77–92.

    Article  CAS  PubMed  Google Scholar 

  32. Okada N, Tsujino M, Hagiwara Y, Tada A, Tamura Y, Mori K et al. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 2001; 84: 1564–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okada N, Masunaga Y, Okada Y, Mizuguchi H, Iiyama S, Mori N et al. Dendritic cells transduced with gp100 gene by RGD fiber-mutant adenovirus vectors are highly efficacious in generating anti-B16BL6 melanoma immunity in mice. Gene Therapy 2003; 10: 1891–1902.

    Article  CAS  PubMed  Google Scholar 

  34. Eerola AK, Soini Y, Paakko P . A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin Cancer Res 2000; 6: 1875–1881.

    CAS  PubMed  Google Scholar 

  35. Yin XY, Lu MD, Lai YR, Liang LJ, Huang JF . Prognostic significances of tumor-infiltrating S-100 positive dendritic cells and lymphocytes in patients with hepatocellular carcinoma. Hepatogastroenterology 2003; 50: 1281–1284.

    PubMed  Google Scholar 

  36. Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 2004; 28: e26–e31.

    Article  PubMed  Google Scholar 

  37. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998; 58: 3491–3494.

    CAS  PubMed  Google Scholar 

  38. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410: 1107–1111.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348: 203–213.

    Article  CAS  PubMed  Google Scholar 

  40. Smolle J, Hofmann-Wellenhof R, Fink-Puches R . Melanoma and stroma: an interaction of biological and prognostic importance. Semin Cutan Med Surg 1996; 15: 326–335.

    Article  CAS  PubMed  Google Scholar 

  41. Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002; 169: 424–433.

    Article  CAS  PubMed  Google Scholar 

  42. Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG . Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res 2003; 63: 5505–5512.

    CAS  PubMed  Google Scholar 

  43. Okada N, Tsukada Y, Nakagawa S, Mizuguchi H, Mori K, Saito T et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun 2001; 282: 173–179.

    Article  CAS  PubMed  Google Scholar 

  44. Okada N, Saito T, Masunaga Y, Tsukada Y, Nakagawa S, Mizuguchi H et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res 2001; 61: 7913–7919.

    CAS  PubMed  Google Scholar 

  45. Moser B, Loetscher P . Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2: 123–128.

    Article  CAS  PubMed  Google Scholar 

  46. Kim CH, Nagata K, Butcher EC . Dendritic cells support sequential reprogramming of chemoattractant receptor profiles during naive to effector T cell differentiation. J Immunol 2003; 171: 152–158.

    Article  CAS  PubMed  Google Scholar 

  47. Mullins IM, Slingluff CL, Lee JK, Garbee CF, Shu J, Anderson SG et al. CXC chemokine receptor 3 expression by activated CD8+ T cells is associated with survival in melanoma patients with stage III disease. Cancer Res 2004; 64: 7697–7701.

    Article  CAS  PubMed  Google Scholar 

  48. Hudak S, Hagen M, Liu Y, Catron D, Oldham E, McEvoy LM et al. Immune surveillance and effector functions of CCR10+ skin homing T cells. J Immunol 2002; 169: 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  49. Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T . Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and αv integrin-binding ablation. J Virol 2003; 77: 13062–13072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okada Y, Okada N, Mizuguchi H, Hayakawa T, Nakagawa S, Mayumi T . Transcriptional targeting of RGD fiber-mutant adenovirus vectors can improve the safety of suicide gene therapy for murine melanoma. Cancer Gene Ther 2005; 12: 608–616.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Osamu Yoshie and Takashi Nakayama (Department of Microbiology, Kinki University School of Medicine, Osaka-Sayama, Japan) for providing plasmids containing murine chemokine cDNA, to Yoshinobu Kimura (Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan) for technical assistance, and to KIRIN Brewery Co., Ltd (Tokyo, Japan) for providing recombinant murine granulocyte/macrophage colony-stimulating factor. The present study was supported in part by the Research on Health Sciences focusing on Drug Innovation from The Japan Health Sciences Foundation; by grants from the Bioventure Development Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by grants from the Ministry of Health, Labour and Welfare in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, N., Sasaki, A., Niwa, M. et al. Tumor suppressive efficacy through augmentation of tumor-infiltrating immune cells by intratumoral injection of chemokine-expressing adenoviral vector. Cancer Gene Ther 13, 393–405 (2006). https://doi.org/10.1038/sj.cgt.7700903

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700903

Keywords

This article is cited by

Search

Quick links