Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Growth inhibition efficacy of an adenovirus expressing dual therapeutic genes, wild-type p53, and anti-erbB2 ribozyme, against human bladder cancer cells

Abstract

The altered expression of both p53 and erbB2 is strongly related to the disease status and the outcome of bladder cancers. We examined the antitumor efficacy by the modulation of these genetic alterations with a newly designed dual-gene-expressing adenovirus (Ad-p53/erbB2Rz), which expresses p53 and anti-erbB2 ribozyme simultaneously in human bladder cancer cells. Cell growth inhibition efficacy along with biological responses of this virus was compared with other viral vectors (Ad-p53, which expresses wild-type p53 cDNA, and Ad-erbB2Rz, which expresses anti-erbB2 ribozyme, solely or in combination). Sufficient transgene expression in targeted cells and the altered expression of the targeted genes and their encoded proteins were obtained by each therapeutic vector. Each of the three therapeutic viral vectors inhibited bladder cancer cell growth, and the putative additive antitumor effect was shown by the combination of two of the therapeutic vectors. Furthermore, Ad-p53/erbB2Rz had superior therapeutic efficacy when the same titers of viruses were infected. Nonspecific vector-related toxicity was minimized by reducing the total amount of viral titers by using the dual-gene-expressing adenovirus. Modulation of multiple genetic abnormalities might enhance the therapeutic efficacy, and vector-related toxicity could be minimized when the total amount of viral titers are reduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Irie A . Advances in gene therapy for bladder cancer. Curr Gene Ther 2003; 3: 1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Spruck III CH, Ohneseit PF, Gonzalez-Zulueta M, Esrig D, Miyao N, Tsai YC et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 1994; 54: 784–788.

    CAS  PubMed  Google Scholar 

  3. Reznikoff CA, Belair CD, Yeager TR, Savelieva E, Blelloch RH, Puthenveettil JA et al. A molecular genetic model of human bladder cancer pathogenesis. Semin Oncol 1996; 23: 571–584.

    CAS  PubMed  Google Scholar 

  4. Fujimoto K, Yamada Y, Okajima E, Kakizoe T, Sasaki H, Sugimura T et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res 1992; 52: 1393–1398.

    CAS  PubMed  Google Scholar 

  5. Esrig D, Elmajian D, Groshen S, Freeman JA, Stein JP, Chen SC et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 1994; 331: 1259–1264.

    Article  CAS  PubMed  Google Scholar 

  6. Moriyama M, Akiyama T, Yamamoto T, Kawamoto T, Kato T, Sato K et al. Expression of c-erbB-2 gene product in urinary bladder cancer. J Urol 1991; 145: 423–427.

    Article  CAS  PubMed  Google Scholar 

  7. Sato K, Moriyama M, Mori S, Saito M, Watanuki T, Terada K et al. An immunohistologic evaluation of C-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer 1992; 70: 2493–2498.

    Article  CAS  PubMed  Google Scholar 

  8. Wagner U, Sauter G, Moch H, Novotna H, Epper R, Mihatsch MJ et al. Patterns of p53, erbB-2, and EGF-r expression in premalignant lesions of the urinary bladder. Hum Pathol 1995; 26: 970–978.

    Article  CAS  PubMed  Google Scholar 

  9. Tetu B, Fradet Y, Allard P, Veilleux C, Roberge N, Bernard P . Prevalence and clinical significance of HER/2neu, p53 and Rb expression in primary superficial bladder cancer. J Urol 1996; 155: 1784–1788.

    Article  CAS  PubMed  Google Scholar 

  10. Tsai YS, Tzai TS, Chow NH, Yang WH, Tong YC, Lin JS et al. Prognostic values of p53 and HER-2/neu coexpression in invasive bladder cancer in Taiwan. Urol Int 2003; 71: 262–270.

    Article  CAS  PubMed  Google Scholar 

  11. von Gruenigen VE, Santoso JT, Coleman RL, Muller CY, Miller DS, Mathis JM . In vivo studies of adenovirus-based p53 gene therapy for ovarian cancer. Gynecol Oncol 1998; 69: 197–204.

    Article  CAS  PubMed  Google Scholar 

  12. Thompson JD, Ayers DF, Malmstrom TA, McKenzie TL, Ganousis L, Chowrira BM et al. Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucleic Acids Res 1995; 23: 2259–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W . A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 1985; 41: 521–530.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang WW, Koch PE, Roth JA . Detection of wild-type contamination in a recombinant adenoviral preparation by PCR. Biotechniques 1995; 18: 444–447.

    CAS  PubMed  Google Scholar 

  15. Irie A, Uchida T, Ishida H, Matsumoto K, Iwamura M, Baba S . p53 Mutation in bladder cancer patients in Japan and inhibition of growth by in vitro adenovirus-mediated wild-type p53 transduction in bladder cancer cells. Mol Urol 2001; 5: 53–58.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–330.

    CAS  PubMed  Google Scholar 

  17. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT . The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 2001; 61: 6592–6600.

    CAS  PubMed  Google Scholar 

  18. Yamashita M, Rosser CJ, Zhou JH, Zhang XQ, Connor RJ, Engler H et al. Syn3 provides high levels of intravesical adenoviral-mediated gene transfer for gene therapy of genetically altered urothelium and superficial bladder cancer. Cancer Gene Ther 2002; 9: 687–691.

    Article  CAS  PubMed  Google Scholar 

  19. Siemens DR, Elzey BD, Lubaroff DM, Bohlken C, Jensen RJ, Swanson AK et al. Cutting edge: restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrix. J Immunol 2001; 166: 731–735.

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka M, Fraizer GC, De La Cerda J, Cristiano RJ, Liebert M, Grossman HB . Connexin 26 enhances the bystander effect in HSVtk/GCV gene therapy for human bladder cancer by adenovirus/PLL/DNA gene delivery. Gene Therapy 2001; 8: 139–148.

    Article  CAS  PubMed  Google Scholar 

  21. Kuball J, Wen SF, Leissner J, Atkins D, Meinhardt P, Quijano E et al. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J Clin Oncol 2002; 20: 957–965.

    Article  CAS  PubMed  Google Scholar 

  22. Pagliaro LC, Keyhani A, Williams D, Woods D, Liu B, Perrotte P et al. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J Clin Oncol 2003; 21: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  23. Sugrue MM, Shin DY, Lee SW, Aaronson SA . Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 1997; 94: 9648–9653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang C, Cirielli C, Capogrossi MC, Passaniti A . Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res 1995; 55: 4210–4213.

    CAS  PubMed  Google Scholar 

  25. Miyake H, Hara I, Gohji K, Yamanaka K, Arakawa S, Kamidono S . Enhancement of chemosensitivity in human bladder cancer cells by adenoviral-mediated p53 gene transfer. Anticancer Res 1998; 18 (4C): 3087–3092.

    CAS  PubMed  Google Scholar 

  26. Miyake H, Hara I, Hara S, Arakawa S, Kamidono S . Synergistic chemosensitization and inhibition of tumor growth and metastasis by adenovirus-mediated P53 gene transfer in human bladder cancer model. Urology 2000; 56: 332–336.

    Article  CAS  PubMed  Google Scholar 

  27. Lang FF, Yung WK, Raju U, Libunao F, Terry NH, Tofilon PJ . Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene. J Neurosurg 1998; 89: 125–132.

    Article  CAS  PubMed  Google Scholar 

  28. Feng M, Cabrera G, Deshane J, Scanlon KJ, Curiel DT . Neoplastic reversion accomplished by high efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res 1995; 55: 2024–2028.

    CAS  PubMed  Google Scholar 

  29. Irie A, Anderegg B, Kashani-Sabet M, Ohkawa T, Suzuki T, Halks-Miller M et al. Therapeutic efficacy of an adenovirus-mediated anti-H-ras ribozyme in experimental bladder cancer. Antisense Nucleic Acid Drug Dev 1999; 9: 341–349.

    Article  CAS  PubMed  Google Scholar 

  30. Coombs LM, Pigott DA, Sweeney E, Proctor AJ, Eydmann ME, Parkinson C et al. Amplification and over-expression of c-erbB-2 in transitional cell carcinoma of the urinary bladder. Br J Cancer 1991; 63: 601–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sauter G, Moch H, Moore D, Carroll P, Kerschmann R, Chew K et al. Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res 1993; 53 (Suppl 10): 2199–2203.

    CAS  PubMed  Google Scholar 

  32. Kruger S, Weitsch G, Buttner H, Matthiensen A, Bohmer T, Marquardt T et al. Overexpression of c-erbB-2 oncoprotein in muscle-invasive bladder carcinoma: relationship with gene amplification, clinicopathological parameters and prognostic outcome. Int J Oncol 2002; 21: 981–987.

    PubMed  Google Scholar 

  33. Coogan CL, Estrada CR, Kapur S, Bloom KJ . HER-2/neu protein overexpression and gene amplification in human transitional cell carcinoma of the bladder. Urology 2004; 63: 786–790.

    Article  PubMed  Google Scholar 

  34. Suzuki T, Anderegg B, Ohkawa T, Irie A, Engebraaten O, Halks-Miller M et al. Adenovirus-mediated ribozyme targeting of HER-2/neu inhibits in vivo growth of breast cancer cells. Gene Therapy 2000; 7: 241–248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Y Bouffard, Olav Engebraaten, Toshiya Suzuki, and Weiqiang Chen for their important suggestions and technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Irie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irie, A., Matsumoto, K., Anderegg, B. et al. Growth inhibition efficacy of an adenovirus expressing dual therapeutic genes, wild-type p53, and anti-erbB2 ribozyme, against human bladder cancer cells. Cancer Gene Ther 13, 298–305 (2006). https://doi.org/10.1038/sj.cgt.7700892

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700892

Keywords

This article is cited by

Search

Quick links