Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic gene delivery of interferon-inducible protein 10 through replication-competent retrovirus vectors suppresses tumor growth

Abstract

Sustained maintenance of therapeutic levels of angiostatic proteins in tumor tissues continues to represent a major challenge to antiangiogenesis therapy of cancer. In this study, we tested the hypothesis of utilizing gene transfer via replication-competent retroviral (RCR) vectors for chronic protein delivery. We now show that bioactive human interferon-inducible protein-10 (IP10) can be secreted from a variety of mammalian cells upon transduction with RCR vectors carrying the human IP10 gene. The production of IP10 from RCR-transduced cells could be maintained for at least three months in culture. The level and duration of IP10 expression in vivo was sufficient to inhibit growth of subcutaneous (s.c.) tumors as well as metastatic lesions in mice. This tumor inhibition was correlated to a marked reduction in tumor vascularization and mitotic activity. By conducting immunohistological studies, we have been able to show that IP10 vector-affected tumors evidenced elevated levels of IL-12p35 mRNA, with no sign of changes in the local inflammatory response, however, as determined by macrophage infiltration and the expression of proinflammatory cytokines. We are addressing the feasibility of using RCR vector-based gene therapy as a more convenient alternative tool to chronically deliver antiangiogenic proteins for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis. In: Holland JF, et al, (eds.), Cancer Medicine. 5th ed. Hamilton, Ontario, Canada: Decker; 2000: 132–152.

    Google Scholar 

  2. Folkman J . Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3:643–651.

    Article  CAS  Google Scholar 

  3. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–364.

    Article  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  Google Scholar 

  5. Kerbel R, Folkman J . Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–739.

    Article  CAS  Google Scholar 

  6. Liau G, Su EJ, Dixon KD . Clinical efforts to modulate angiogenesis in the adult: gene therapy versus conventional approaches. DDT. 2001;6:689–697.

    Article  CAS  Google Scholar 

  7. Eatock MM, Schatzlein A, Kaye SB . Tumor vasculature as target for anticancer therapy. Cancer Treat Rev. 2000;26:191–204.

    Article  CAS  Google Scholar 

  8. Tennnat TR, Rinker-Schaeffer CW, Stadler WM . Angiogenesis inhibitors. Curr Oncol Rep. 2000;2:11–16.

    Article  Google Scholar 

  9. Feldman AL, Libutti SK . Progression in antiangiogenic gene therapy of cancer. Cancer. 2000;89:1181–1194.

    Article  CAS  Google Scholar 

  10. Folkman J . Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15–18.

    Article  CAS  Google Scholar 

  11. Zlotnik A, Yoshie O . Chemokines: a new classification system and their role in imunity. Immunity. 2000;12:121–127.

    Article  CAS  Google Scholar 

  12. Baggiolini M, Dewald B, Moser B . Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705.

    Article  CAS  Google Scholar 

  13. Moore BB, Arenberg DA, Addison CL, Keane MP, Polverini PJ, Strieter RM . CXC chemokines mechanism of action in regulating tumor angiogenesis. Angiogenesis. 1998;2:123–134.

    Article  CAS  Google Scholar 

  14. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM . CXC chemokines in angiogenesis. J Leukoc Biol. 2000;68:1–8.

    CAS  Google Scholar 

  15. Frederick MJ, Clayman GL . Chemokines in cancer. Expert Rev Mol Med. 2001;3:1–18.

    Article  CAS  Google Scholar 

  16. Wang JM, Deng X, Gong W, Su S . Chemokines and their role in tumor growth and metastasis. J Immunol Methods. 1998;220:1–17.

    Article  CAS  Google Scholar 

  17. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348–27357.

    Article  CAS  Google Scholar 

  18. Luster AD, Greenberg SM, Leder P . The IP10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor-4 and inhibits endothelial cell proliferation. J Exp Med. 1995;182:219–231.

    Article  CAS  Google Scholar 

  19. Angiolillo AL, Sgadari C, Taub DD, et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med. 1995;182:155–162.

    Article  CAS  Google Scholar 

  20. Luster AD, Leder P . IP10, a C-X-C chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med. 1993;178:1057–1065.

    Article  CAS  Google Scholar 

  21. Pertl U, Luster AD, Varki NM, et al. IFN-γ-inducible protein-10 is essential for the generation of protective tumor-specific CD8T cell response induced by single-chain IL-12 gene therapy. J Immunol. 2001;166:6944–6951.

    Article  CAS  Google Scholar 

  22. Loetscher M, Gerber B, Loetscher P, et al. Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activated T-lymphocytes. J Exp Med. 1996;184:963–969.

    Article  CAS  Google Scholar 

  23. Loetscher P, Uguccioni M, Bordoli L, et al. CCR5 is characteristic of Th1 lymphocytes. Nature. 1998;391:344–345.

    Article  CAS  Google Scholar 

  24. Qin S, Rottman JB, Myers P, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 1998;101:746–754.

    Article  CAS  Google Scholar 

  25. Narvaiza I, Mazzolini G, Barajas M, et al. Intratumoral co-injection of two adenoviruses, one encoding the chemokine IFN-g-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol. 2000;164:3112–3122.

    Article  CAS  Google Scholar 

  26. Regulier E, Paul S, Marigliano M, et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther. 2001;8:45–54.

    Article  CAS  Google Scholar 

  27. Feldman AL, Friedl J, Lans TE, et al. Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts. Int J Cancer. 2002;99:149–153.

    CAS  Google Scholar 

  28. Kuo CJ, Farnebo F, Yu EY, et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA. 2001;98:4605–4610.

    Article  CAS  Google Scholar 

  29. Feldman AL, Alexander HR, Hewitt SM, et al. Effect of retroviral endostatin gene transfer on subcutaneous and intraperitoneal growth of murine tumors. J Natl Cancer Inst. 2001;93:1014–1020.

    Article  CAS  Google Scholar 

  30. Anderson WF . Hum Gene Ther. 1998;392:25–30.

  31. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7:33–40.

    Article  CAS  Google Scholar 

  32. Logg CR, Tai CK, Logg A, Anderson WF, Kasahara N . A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther. 2001;12:921–932.

    Article  CAS  Google Scholar 

  33. Solly SK, Trajcevski S, Frisen C, et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther. 2003;10:30–39.

    Article  CAS  Google Scholar 

  34. Finger C, Sun Y, Sanz L, Alvarez-Vallina L, Buchholz CJ, Cichutek K . Replicating retroviral vectors mediating continuous production and secretion of therapeutic gene products from cancer cells. Cancer Gene Ther. 2005;12:464–474.

    Article  CAS  Google Scholar 

  35. Buchholz CJ, Peng KW, Morling FJ, Zhang J, Cosset FL, Russell SJ . In vivo selection of protease cleavage sites from retrovirus display libraries. Nat Biotechnol. 1998;16:951–954.

    Article  CAS  Google Scholar 

  36. Schneider RM, Medvedovska Y, Hartl I, et al. Directed evolution of retroviruses activatable by tumor-associated matrix metalloproteases. Gene Therapy. 2003;10:1370–1380.

    Article  CAS  Google Scholar 

  37. Moller P, Moller H, Sun Y, et al. Increased non-major histocompatibility complex-restricted lytic activity in melanoma patients vaccinated with cytokine gene-transfected autologous tumor cells. Cancer Gene Ther. 2000;7:976–984.

    Article  CAS  Google Scholar 

  38. Weidner N, Semple JP, Welch WR, Folkman J . Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  CAS  Google Scholar 

  39. Balkwill F, Mantovani A . Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–545.

    Article  CAS  Google Scholar 

  40. Bingle L, Brown NJ, Lewis CE . The role of tumor-associated macrophages in tumor progression: implications for new anticancer therapies. J Pathol. 2002;196:254–265.

    Article  CAS  Google Scholar 

  41. Coussens LM, Werb Z . Inflammation and cancer. Nature. 2002;420:860–867.

    Article  CAS  Google Scholar 

  42. Folkman J . Angiogenesis inhibitors. Cancer Biol Ther. 2003;2(Suppl. 1):S127–S133.

    CAS  PubMed  Google Scholar 

  43. Sgadari C, Angiolillo AL, Cherney BW, et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci USA. 1996;93:13791–13796.

    Article  CAS  Google Scholar 

  44. Arenberg DA, Kunkel SL, Polverini PJ, et al. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med. 1996;184:981–992.

    Article  CAS  Google Scholar 

  45. Farber JM . Mig and IP10: CXC chemokines that target lymphocytes. J Leukoc Biol. 1997;61:246–257.

    Article  CAS  Google Scholar 

  46. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A . Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med. 1998;187:875–883.

    Article  CAS  Google Scholar 

  47. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257.

    Article  CAS  Google Scholar 

  48. Hartl I, Schneider RM, Sun Y, et al. Library based selection of retroviruses selectively spreading through matrix metalloprotease positive cells. Gene Therapy. 2005, in press.

  49. Logg CR, Logg A, Matusik RJ, Bochner BH, Kasahara N . Tissue-specific transcriptional targeting of a replication-competent retroviral vector. J Virol. 2002;76:12783–12791.

    Article  CAS  Google Scholar 

  50. Tai CK, Logg CR, Park JM, Anderson WF, Press MF, Kasahara N . Antibody-mediated targeting of replication-competent retroviral vectors. Hum Gene Ther. 2003;14:789–802.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P Volkers for help with statistic analysis, C Coulibaly and R Plesker for help in animal handling, K Boller for expert microscopic imaging, and to J Medvedovska for excellent technical assistance. This work was supported by Grant 2002.067.1 of the Wilhelm-Sander-Stiftung to CJB and KC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J Buchholz.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Finger, C., Alvarez-Vallina, L. et al. Chronic gene delivery of interferon-inducible protein 10 through replication-competent retrovirus vectors suppresses tumor growth. Cancer Gene Ther 12, 900–912 (2005). https://doi.org/10.1038/sj.cgt.7700854

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700854

Keywords

This article is cited by

Search

Quick links