Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer

Abstract

The type 1 insulin-like growth factor receptor (IGF1R) is overexpressed in prostate cancer, and mediates proliferation, motility, and survival. Many prostate cancers harbor inactivating PTEN mutations, enhancing Akt phosphorylation. This activates the principal antiapoptotic pathway downstream of the IGF1R, calling into question the value of IGF1R targeting in this tumor. The aim of the current study was to assess the effect of IGF1R gene silencing in prostate cancer cells that lack functional PTEN protein. In human DU145, LNCaP and PC3 prostate cancer cells, transfection with IGF1R small interfering RNA induced significant enhancement of apoptosis and inhibition of survival, not only in PTEN wild-type DU145 but also in PTEN mutant LNCaP and PC3. This was attributed to attenuation of IGF signaling via Akt, ERKs and p38. In both DU145 and PC3, IGF1R knockdown led to enhancement of sensitivity to mitoxantrone, etoposide, nitrogen mustard and ionizing radiation. There was no sensitization to paclitaxel or 5-fluorouracil, which do not damage DNA, suggesting that chemosensitization results from impairment of the DNA damage response, in addition to removal of apoptosis protection. These results support the concept of IGF1R targeting in prostate cancer, and indicate that PTEN loss does not render tumor cells refractory to this strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, Wingo PA . Cancer statistics, 1997. CA Cancer J Clin. 1997; 47: 5–27.

    Article  CAS  Google Scholar 

  2. Byrne RL, Leung H, Neal DE . Peptide growth factors in the prostate as mediators of stromal epithelial interaction. Br J Urol. 1996; 77: 627–633.

    Article  CAS  Google Scholar 

  3. Oh WK, Kantoff PW . Management of hormone refractory prostate cancer: current standards and future prospects. J Urol. 1998; 160: 1220–1229.

    Article  CAS  Google Scholar 

  4. Wang J, Halford S, Rigg A, Roylance R, Lynch M, Waxman J . Adjuvant mitozantrone chemotherapy in advanced prostate cancer. BJU Int. 2000; 86: 675–680.

    Article  CAS  Google Scholar 

  5. Kish JA, Bukkapatnam R, Palazzo F . The treatment challenge of hormone-refractory prostate cancer. Cancer Control. 2001; 8: 487–495.

    Article  CAS  Google Scholar 

  6. Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998; 279: 563–566.

    Article  CAS  Google Scholar 

  7. Wolk A, Mantzoros CS, Andersson SO, et al. Insulin-like growth factor 1 and prostate cancer risk: a population-based, case–control study. J Natl Cancer Inst. 1998; 90: 911–915.

    Article  CAS  Google Scholar 

  8. Baserga R . The IGF-I receptor in cancer research. Exp Cell Res. 1999; 253: 1–6.

    Article  CAS  Google Scholar 

  9. Bohula EA, Playford MP, Macaulay VM . Targeting the type 1 insulin-like growth factor receptor as anti-cancer treatment. Anticancer Drugs. 2003; 14: 669–682.

    Article  CAS  Google Scholar 

  10. Maile LA, Imai Y, Clarke JB, Clemmons DR . Insulin-like growth factor I increases alpha V beta 3 affinity by increasing the amount of integrin-associated protein that is associated with non-raft domains of the cellular membrane. J Biol Chem. 2002; 277: 1800–1805.

    Article  CAS  Google Scholar 

  11. Jackson JG, Zhang X, Yoneda T, Yee D . Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene. 2001; 20: 7318–7325.

    Article  CAS  Google Scholar 

  12. Playford MP, Bicknell D, Bodmer WF, Macaulay VM . Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA. 2000; 97: 12103–12108.

    Article  CAS  Google Scholar 

  13. Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Burfeind P . Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. J Pathol. 2004; 202: 50–59.

    Article  CAS  Google Scholar 

  14. Kurek R, Tunn UW, Aumueller G, Renneberg H . Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor receptor (IGFR-1) in prostate cancer. J Urol. 2000; 163(Suppl): 35.

    Google Scholar 

  15. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM . Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002; 62: 2942–2950.

    CAS  PubMed  Google Scholar 

  16. Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M . In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 2001; 61: 6276–6280.

    CAS  PubMed  Google Scholar 

  17. Burfeind P, Chernicky CL, Rininsland F, Ilan J . Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth, prevents invasion by rat prostate cancer cells in vivo. Proc Natl Acad Sci USA. 1996; 93: 7263–7268.

    Article  CAS  Google Scholar 

  18. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR . Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 1999; 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  19. Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003; 4: 209–221.

    Article  CAS  Google Scholar 

  20. Davies MA, Koul D, Dhesi H, et al. Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res. 1999; 59: 2551–2556.

    CAS  PubMed  Google Scholar 

  21. Reiss K, Wang JY, Romano G, et al. IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene. 2000; 19: 2687–2694.

    Article  CAS  Google Scholar 

  22. Hellawell GO, Ferguson DJ, Brewster SF, Macaulay VM . Chemosensitization of human prostate cancer using antisense agents targeting the type 1 insulin-like growth factor receptor. BJU Int. 2003; 91: 271–277.

    Article  CAS  Google Scholar 

  23. Bohula EA, Salisbury AJ, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem. 2003; 278: 15991–15997.

    Article  CAS  Google Scholar 

  24. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411: 494–498.

    Article  CAS  Google Scholar 

  25. Macaulay VM, Salisbury AJ, Bohula EA, Playford MP, Smorodinsky NI, Shiloh Y . Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase. Oncogene. 2001; 20: 4029–4040.

    Article  CAS  Google Scholar 

  26. Trojanek J, Ho T, Del Valle L, et al. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol. 2003; 23: 7510–7524.

    Article  CAS  Google Scholar 

  27. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T . Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001; 20: 6877–6888.

    Article  CAS  Google Scholar 

  28. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986; 5: 2503–2512.

    Article  CAS  Google Scholar 

  29. Hemminki K, Alhonen A, Linkola E, Hesso A . Kinetics of hydrolysis in vitro of nornitrogen mustard, a metabolite of phosphoramide mustard and cyclophosphamide. Arch Toxicol. 1987; 61: 126–130.

    Article  CAS  Google Scholar 

  30. Iwamura M, Sluss PM, Casamento JB, Cockett AT . Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines. Prostate. 1993; 22: 243–252.

    Article  CAS  Google Scholar 

  31. Zhao H, Dupont J, Yakar S, Karas M, LeRoith D . PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells. Oncogene. 2004; 23: 786–794.

    Article  CAS  Google Scholar 

  32. Wu Y, Karas M, Dupont J, Zhao H, Toyoshima Y, Le Roith D . Multiple signaling pathways are involved in the regulation of IGF-I receptor inhibition of PTEN-enhanced apoptosis. Growth Horm IGF Res. 2004; 14: 52–58.

    Article  CAS  Google Scholar 

  33. Saxena S, Jonsson ZO, Dutta A . Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem. 2003; 278: 44312–44319.

    Article  CAS  Google Scholar 

  34. Peruzzi F, Prisco M, Dews M, et al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol. 1999; 19: 7203–7215.

    Article  CAS  Google Scholar 

  35. Kimura G, Kasuya J, Giannini S, et al. Insulin-like growth factor (IGF) system components in human prostatic cancer cell-lines: LNCaP, DU145, and PC-3 cells. Int J Urol. 1996; 3: 39–46.

    Article  CAS  Google Scholar 

  36. Torring N, Jorgensen PE, Sorensen BS, Nexo E . Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines. Anticancer Res. 2000; 20: 91–95.

    CAS  PubMed  Google Scholar 

  37. Crowe DL, Ohannessian A . Recruitment of focal adhesion kinase and paxillin to beta1 integrin promotes cancer cell migration via mitogen activated protein kinase activation. BMC Cancer. 2004; 4: 18.

    Article  Google Scholar 

  38. Levy Y, Ronen D, Bershadsky AD, Zick Y . Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem. 2003; 278: 14533–14542.

    Article  CAS  Google Scholar 

  39. Guan KL, Figueroa C, Brtva TR, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000; 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  40. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999; 286: 1741–1744.

    Article  CAS  Google Scholar 

  41. Xiao D, Singh SV . Phenethyl isothiocyanate-induced apoptosis in p53-deficient PC-3 human prostate cancer cell line is mediated by extracellular signal-regulated kinases. Cancer Res. 2002; 62: 3615–3619.

    CAS  PubMed  Google Scholar 

  42. Parrizas M, Saltiel AR, LeRoith D . Insulin-like growth factor 1 inhibits apoptosis using the phosphatidyinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997; 272: 154–161.

    Article  CAS  Google Scholar 

  43. Walsh PT, Smith LM, O'Connor R . Insulin-like growth factor-1 activates Akt and Jun N-terminal kinases (JNKs) in promoting the survival of T lymphocytes. Immunology. 2002; 107: 461–471.

    Article  CAS  Google Scholar 

  44. Dunn SE, Hardman RA, Kari FW, Barrett JC . Insulin-like-growth-factor-1 (IGF-1) alters drug-sensitivity of HBL100 human breast-cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res. 1997; 57: 2687–2693.

    CAS  Google Scholar 

  45. Geier A, Weiss C, Beery R, et al. Multiple pathways are involved in protection of MCF-7 cells against death due to protein synthesis inhibition. J Cell Physiol. 1995; 163: 570–576.

    Article  CAS  Google Scholar 

  46. Gooch JL, Van Den Berg CL, Yee D . Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death--proliferative and anti-apoptotic effects. Breast Cancer Res Treat. 1999; 56: 1–10.

    Article  CAS  Google Scholar 

  47. Sell C, Baserga R, Rubin R . Insulin-like growth factor I (IGF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res. 1995; 55: 303–306.

    CAS  Google Scholar 

  48. Sessa C . Anticancer agents. In: Cavalli FH, Kaye HH, Stanley B, eds. Textbook of Medical Oncology. London: Martin Dunitz Ltd; 1997.

    Google Scholar 

  49. Shiloh Y . ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003; 3: 155–168.

    Article  CAS  Google Scholar 

  50. Kasibhatla S, Tseng B . Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003; 2: 573–580.

    CAS  PubMed  Google Scholar 

  51. Valerie K, Povirk LF . Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003; 22: 5792–5812.

    Article  CAS  Google Scholar 

  52. McHugh PJ, Spanswick VJ, Hartley JA . Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001; 2: 483–490.

    Article  CAS  Google Scholar 

  53. Eisenberger MA, De Wit R, Berry W, et al. 2004 ASCO Annual Meeting Abstract 4. New Orleans; 2004.

    Google Scholar 

  54. Horowitz RW, Heerdt BG, Hu X, Schwartz EL, Wadler S . Combination therapy with 5-fluorouracil and IFN-alpha2a induces a nonrandom increase in DNA fragments of less than 3 megabases in HT29 colon carcinoma cells. Clin Cancer Res. 1997; 3: 1317–1322.

    CAS  PubMed  Google Scholar 

  55. Sun HZ, Wu SF, Tu ZH . Blockage of IGF-1R signaling sensitizes urinary bladder cancer cells to mitomycin-mediated cytotoxicity. Cell Res. 2001; 11: 107–115.

    Article  CAS  Google Scholar 

  56. Scotlandi K, Avnet S, Benini S, et al. Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer. 2002; 101: 11–16.

    Article  CAS  Google Scholar 

  57. Scotlandi K, Maini C, Manara MC, et al. Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewing's sarcoma cells. Cancer Gene Ther. 2002; 9: 296–307.

    Article  CAS  Google Scholar 

  58. Benini S, Manara MC, Baldini N, et al. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells. Clin Cancer Res. 2001; 7: 1790–1797.

    CAS  PubMed  Google Scholar 

  59. Paulussen M, Frohlich B, Jurgens H . Ewing tumour: incidence, prognosis and treatment options. Paediatr Drugs. 2001; 3: 899–913.

    Article  CAS  Google Scholar 

  60. Min Y, Adachi Y, Yamamoto H, et al. Genetic blockade of the insulin-like growth factor-I receptor: a promising strategy for human pancreatic cancer. Cancer Res. 2003; 63: 6432–6441.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK and by a Health Foundation Fellowship to MR. We are grateful to Ian Hickson, Peter McHugh, and Andrew Protheroe for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine M Macaulay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochester, M., Riedemann, J., Hellawell, G. et al. Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther 12, 90–100 (2005). https://doi.org/10.1038/sj.cgt.7700775

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700775

Keywords

This article is cited by

Search

Quick links