Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intramuscular delivery of antiangiogenic genes suppresses secondary metastases after removal of primary tumors

Abstract

The success of surgery to remove primary tumors can be compromised by the subsequent outgrowth of metastases. It is recognized that primary tumors secrete antiangiogenic factors that suppress the outgrowth of their daughter metastases. In accord we show here that surgical removal of primary EL-4 lymphomas led to a marked decrease in the levels of circulating angiostatin and endostatin, and promoted the growth of distant nodular tumors. Expression vectors encoding angiostatin and endostatin, formulated with poly-N-vinyl pyrrolidone (PVP), were injected into the tibialis and gastrocnemia muscles, leading to expression of angiostatin and endostatin in muscle fibers. High levels of biologically active exogenous proteins were secreted into the circulation. Intramuscular gene therapy with angiostatin and endostatin plasmids significantly inhibited tumor vascularity and induced tumor cell apoptosis, and thereby suppressed the growth of secondary subcutaneous and disseminated metastatic tumors in the lung and liver. Simultaneous intramuscular delivery of both angiostatin and endostatin plasmids significantly prolonged the survival of mice after removal of primary tumors. These results suggest that intramuscular gene transfer of angiostatin and endostatin might serve as a prophylactic cancer-prevention strategy to combat the recurrence of cancer after surgical resection of primary tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Weinstat-Saslow D, Steeg PS . Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J. 1994; 8: 401–407.

    Article  CAS  Google Scholar 

  2. Fidler IJ, Ellis LM . The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994; 79: 185–188.

    Article  CAS  Google Scholar 

  3. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994; 79: 315–328.

    Article  CAS  Google Scholar 

  4. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997; 88: 277–285.

    Article  CAS  Google Scholar 

  5. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995; 1: 149–153.

    Article  CAS  Google Scholar 

  6. O'Reilly MS, Holmgren L, Chen C, et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 1996; 2: 689–692.

    Article  CAS  Google Scholar 

  7. Dhanabal M, Ramchandran R, Volk R, et al. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res. 1999; 59: 189–197.

    CAS  PubMed  Google Scholar 

  8. Blezinger P, Wang J, Gondo M, et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol. 1999; 17: 343–348.

    Article  CAS  Google Scholar 

  9. Cichon T, Jamrozy L, Glogowska J, et al. Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: Inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther. 2002; 9: 771–777.

    Article  CAS  Google Scholar 

  10. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA. 1999; 96: 2811–2816.

    Article  CAS  Google Scholar 

  11. Kirsch M, Strasser J, Allender R, et al. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res. 1998; 58: 4654–4659.

    CAS  PubMed  Google Scholar 

  12. Joe YA, Hong YK, Chung DS, et al. Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int J Cancer. 1999; 82: 694–699.

    Article  CAS  Google Scholar 

  13. Clasesson-Welsh L, Welsh M, Ito N, et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA. 1998; 95: 5579–5583.

    Article  Google Scholar 

  14. Redlitz A, Daum G, Sage EH . Angiostatin diminishes activation of the mitogen-activated protein kinase ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res. 1999; 36: 28–34.

    Article  CAS  Google Scholar 

  15. Sun X, Kanwar JR, Leung E, et al. Angiostatin enhances B7.1-mediated cancer immunotherapy independently of effects on vascular endothelial growth factor expression. Cancer Gene Ther. 2001; 8: 719–727.

    Article  CAS  Google Scholar 

  16. Lee SJ, Jang JW, Kim YM, et al. Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBS Lett. 2002; 519: 147–152.

    Article  CAS  Google Scholar 

  17. Kim YM, Hwang S, Kim YM, et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem. 2002; 277: 27872–27879.

    Article  CAS  Google Scholar 

  18. Hanai J, Gloy J, Karumanchi SA, et al. Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol. 2002; 158: 529–539.

    Article  CAS  Google Scholar 

  19. Furumatsu T, Yamaguchi N, Nishida K, et al. Endostatin inhibits adhesion of endothelial cells to collagen I via alpha(2)beta(1) integrin, a possible cause of prevention of chondrosarcoma growth. J Biochem. 2002; 131: 619–626.

    Article  CAS  Google Scholar 

  20. Dixelius J, Cross M, Matsumoto T, et al. Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res. 2002; 62: 1944–1947.

    CAS  PubMed  Google Scholar 

  21. Scappaticci FA, Smith R, Pathak A, et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther. 2001; 3: 186–196.

    Article  CAS  Google Scholar 

  22. Scappaticci FA, Contreras A, Smith R, et al. Statin-AE: a novel angiostatin-endostatin fusion protein with enhanced antiangiogenic and antitumor activity. Angiogenesis. 2001; 4: 263–268.

    Article  CAS  Google Scholar 

  23. Putney SD, Burke PA . Improving protein therapeutics with sustained-release formulations. Nat Biotechnol. 1998; 16: 153–157.

    Article  CAS  Google Scholar 

  24. Crystal RG . The body as a manufacturer of endostatin. Nat Biotechnol. 1999; 17: 336–337.

    Article  CAS  Google Scholar 

  25. Boehm T, Folkman J, Browder T . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997; 390: 404–407.

    Article  CAS  Google Scholar 

  26. Folkman J . Antiangiogenic gene therapy. Proc Natl Acad Sci USA. 1998; 95: 9064–9066.

    Article  CAS  Google Scholar 

  27. Kong HL, Crystal RG . Gene therapy strategies for tumor antiangiogenesis. J Natl Cancer Inst. 1998; 90: 273–286.

    Article  CAS  Google Scholar 

  28. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse skeletal muscle in vivo. Science. 1990; 247: 1465–1468.

    Article  CAS  Google Scholar 

  29. Ponnazhagan S, Mahendra G, Kumar S, et al. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor. Cancer Res. 2004; 64: 1781–1787.

    Article  CAS  Google Scholar 

  30. Lu QL, Bou-Gharios G, Partridge TA . Non-viral gene delivery in skeletal muscle: a protein factory. Gene Therapy. 2003; 10: 131–142.

    Article  CAS  Google Scholar 

  31. Zabner J, Ramsey BW, Meeker DP . Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J Clin Invest. 1996; 97: 1504–1511.

    Article  CAS  Google Scholar 

  32. Fisher KJ, Choi H, Burda J . Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology. 1996; 217: 11–22.

    Article  CAS  Google Scholar 

  33. Yei S, Mittereder N, Tang K . Adenovirus-mediated gene transfer for cystic fibrosis: quantitative evaluation of repeated in vivo vector administration to the lung. Gene Therapy. 1994; 1: 192–200.

    CAS  PubMed  Google Scholar 

  34. McMahon JM, Wells KE, Bamfo JE, et al. Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Therapy. 1998; 5: 1283–1290.

    Article  CAS  Google Scholar 

  35. Caron NJ, Torrente Y, Camirand G, et al. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. 2001; 3: 310–318.

    Article  CAS  Google Scholar 

  36. Anwer K, Earle KA, Shi M, et al. Synergistic effect of formulated plasmid and needle-free injection for genetic vaccines. Pharm Res. 1999; 16: 889–895.

    Article  CAS  Google Scholar 

  37. Fewell JG, MacLaughlin F, Mehta V, et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol Ther. 2001; 3: 574–583.

    Article  CAS  Google Scholar 

  38. Oga M, Takenaga K, Sato Y, et al. Inhibition of metastatic brain tumor growth by intramuscular administration of the endostatin gene. Int J Oncol. 2003; 23: 73–79.

    CAS  PubMed  Google Scholar 

  39. Mumper RJ, Wang J, Klakamp SL, et al. Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J Control Release. 1998; 52: 191–203.

    Article  CAS  Google Scholar 

  40. Sun X, Kanwar JR, Leung E, et al. Gene transfer of antisense hypoxia inducible factor-1α enhances the therapeutic efficacy of cancer immunotherapy. Gene Therapy. 2001; 8: 638–645.

    Article  CAS  Google Scholar 

  41. Kanwar JR, Berg RW, Yang Y, et al. Requirements for ICAM-1 immunogene therapy of lymphoma. Cancer Gene Ther. 2003; 10: 468–476.

    Article  CAS  Google Scholar 

  42. Sckell A, Safabakhsh N, Dellian M, et al. Primary tumor size-dependent inhibition of angiogenesis at a secondary site: an intravital microscopic study in mice. Cancer Res. 1998; 58: 5866–5869.

    CAS  PubMed  Google Scholar 

  43. Guba M, Cernaianu G, Koehl G, et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res. 2001; 61: 5575–5579.

    CAS  PubMed  Google Scholar 

  44. Kanwar JR, Shen WP, Berg R, et al. Effect of survivin antagonists on the growth of established tumors and B7.1 immunogene therapy. J Natl Cancer Inst. 2001; 93: 1541–1552.

    Article  CAS  Google Scholar 

  45. Maeda H, Shiraishi A . TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol. 1996; 156: 73–78.

    CAS  PubMed  Google Scholar 

  46. Won J, Kim H, Park EJ, et al. Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy. Cancer Res. 1999; 59: 1273–1277.

    CAS  PubMed  Google Scholar 

  47. Kanwar JR, Berg R, Lehnert K, et al. Taking lessons from dendritic cells: multiple xenogeneic ligands for leukocyte integrins have the potential to stimulate anti-tumour immunity. Gene Therapy. 1999; 6: 1835–1844.

    Article  CAS  Google Scholar 

  48. Pawliuk R, Bachelot T, Zurkiya O, et al. Continuous intravascular secretion of endostatin in mice from transduced hematopoietic stem cells. Mol Ther. 2002; 5: 345–351.

    Article  CAS  Google Scholar 

  49. Eisterer W, Jiang X, Bachelot T, et al. Unfulfilled promise of endostatin in a gene therapy–xenotransplant model of human acute lymphocytic leukemia. Mol Ther. 2002; 5: 352–359.

    Article  CAS  Google Scholar 

  50. Hori K, Li HC, Saito S, et al. Increased growth and incidence of lymph node metastases due to the angiogenesis inhibitor AGM-1470. Br J Cancer. 1997; 75: 1730–1734.

    Article  CAS  Google Scholar 

  51. Dixelius J, Cross MJ, Matsumoto T . Endostatin action and intracellular signaling: beta-catenin as a potential target? Cancer Lett. 2003; 196: 1–12.

    Article  CAS  Google Scholar 

  52. Lucas R, Holmgren L, Garcia I, et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood. 1998; 92: 4730–4741.

    CAS  PubMed  Google Scholar 

  53. Wickstrom SA, Veikkola T, Rehn M . Endostatin-induced modulation of plasminogen activation with concomitant loss of focal adhesions and actin stress fibers in cultured human endothelial cells. Cancer Res. 2002; 61: 6511–6516.

    Google Scholar 

  54. Rak JW, St Croix BD, Kerbel RS . Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anti-Cancer Drugs. 1995; 6: 3–18.

    Article  CAS  Google Scholar 

  55. Dixelius J, Larsson H, Sasaki T, et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood. 2000; 95: 3403–3411.

    CAS  PubMed  Google Scholar 

  56. Oehler MK, Bicknell R . The promise of anti-angiogenic cancer therapy. Br J Cancer. 2000; 82: 749–752.

    Article  CAS  Google Scholar 

  57. Camphausen K, Moses MA, Beecken WD, et al. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 2001; 61: 2207–2211.

    CAS  PubMed  Google Scholar 

  58. Wen W, Moses MA, Wiederschain D, et al. The generation of endostatin is mediated by elastase. Cancer Res. 1999; 59: 6052–6056.

    CAS  PubMed  Google Scholar 

  59. Felbor U, Dreier L, Bryant RA, et al. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000; 19: 1187–1194.

    Article  CAS  Google Scholar 

  60. O'Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J . Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science. 1999; 285: 1926–1928.

    Article  CAS  Google Scholar 

  61. Kisker O, Onizuka S, Banyard J, et al. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res. 2001; 61: 7298–7304.

    CAS  PubMed  Google Scholar 

  62. Feldman AL, Libutti SK . Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 1999; 59: 3308–3312.

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from the National Natural Scientific Foundation of China (30100178), the Scientific and Technological Committee of Shandong Province (1997BB1CJB1), a Young and Middle-aged Excellent Scientists Prize Fund from Shandong Province, China (9836), the Wellcome Trust (UK), the Maurice and Phyllis Paykel Trust, and the Health Research Council of New Zealand. X Sun is a recipient of a Wellcome Trust Research Leave Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueying Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Qiao, H., Jiang, H. et al. Intramuscular delivery of antiangiogenic genes suppresses secondary metastases after removal of primary tumors. Cancer Gene Ther 12, 35–45 (2005). https://doi.org/10.1038/sj.cgt.7700766

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700766

Keywords

This article is cited by

Search

Quick links