Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced paclitaxel cytotoxicity and prolonged animal survival rate by a nonviral-mediated systemic delivery of E1A gene in orthotopic xenograft human breast cancer

Abstract

Paclitaxel (Taxol) is a promising frontline chemotherapeutic agent for the treatment of human breast and ovarian cancers. The adenoviral type 5 E1A gene has been tested in multiple clinical trials for its anticancer activity. E1A has also been shown to sensitize paclitaxel-induced killing in E1A-expressing cells. Here, we show that E1A can sensitize paclitaxel-induced apoptosis in breast cancer cells in a gene therapy setting by an orthotopic mammary tumor model. We first showed that expression of E1A enhanced in vitro paclitaxel cytotoxicity, as compared to the control cells. We then compared the therapeutic efficacy of paclitaxel between orthotopic tumor models established with vector-transfected MDA-MB-231 (231-Vect) versus 231-E1A stable cells, using tumor weight and apoptotic index (TUNEL assay) as the parameters. We found paclitaxel was more effective in shrinking tumors and inducing apoptosis in tumor models established with stable 231-E1A cells than the control 231-Vect cells. We also tested whether E1A could directly enhance paclitaxel-induced killing in nude mice, by using a nonviral, surface-protected cationic liposome to deliver E1A gene via the mouse tail vein. We compared the therapeutic effects of E1A gene therapy with or without Taxol chemotherapy in the established orthotopic tumor model of animals inoculated with MDA-MB-231 cells, and found that a combination of systemic E1A gene therapy and paclitaxel chemotherapy significantly enhanced the therapeutic efficacy and dramatically repressed tumor growth (P<.01). In addition, survival rates were significantly higher in animals treated with combination therapy than in the therapeutic control groups (both P<.0001). Thus, the E1A gene therapy indeed enhances the sensitivity of tumor cells to chemotherapy in a gene therapy setting and, the current study provides preclinical data to support combination therapy between E1A gene and chemotherapy for future clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hayes DF, Thor AD . c-erbB-2 in breast cancer: development of a clinically useful marker. Semin Oncol. 2002;29:231–245.

    Article  CAS  PubMed  Google Scholar 

  2. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792.

    Article  CAS  PubMed  Google Scholar 

  3. Smith IE . New drugs for breast cancer. Lancet. 2002;360:790–792.

    Article  PubMed  Google Scholar 

  4. Yu DH, Hung MC . The erbB2 gene as a cancer therapeutic target, the tumor-, metastasis-suppressing function of E1A. Cancer Metast Rev. 1998;17:195–202.

    Article  CAS  Google Scholar 

  5. Yan D, Shao RP, Hung MC . E1A cancer gene therapy. In: Lattime EC, Gerson SL, eds. Gene Therapy of Cancer. 2nd edn. San Diego, CA: Academic Press; 2002: 465–477.

    Chapter  Google Scholar 

  6. Pozzatti R, McCormick M, Thompson MA, Khoury G . The E1a gene of adenovirus type 2 reduces the metastastic potential of ras-transformed rat embryo cells. Mol Cell Biol. 1988;8:2984–2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steeg P, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME . Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 E1a inhibition of experimental metastasis. Cancer Res. 1988;48:6550–6554.

    CAS  PubMed  Google Scholar 

  8. Pozzatti R, McCormick M, Thompson MA, Garbisa S, Liotta LA, Khoury G . Regulation of the metastatic phenotype by the E1A gene of adenovirus-2. Adv Exp Med. 1988;233:293–301.

    Article  CAS  Google Scholar 

  9. Yu D, Hamada J, Zhang H, et al. Mechanisms of c-erbB2/neu oncogene-induced metastasis and repression of metastatic properties by adenovirus 5 E1A gene products. Oncogene. 1992;7:2263–2270.

    CAS  PubMed  Google Scholar 

  10. Frisch SM . Antioncogenic effect of adenovirus E1A in human tumor cells. Proc Natl Acad Sci USA. 1991;88:9077–9081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chinnadurai G . Adenovirus E1a as a tumor-suppressor gene. Oncogene. 1992;7:1255–1258.

    CAS  PubMed  Google Scholar 

  12. Frisch SM, Mymryk JS . Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol. 2002;3:441–452.

    Article  CAS  PubMed  Google Scholar 

  13. Yan D, Rau KM, Hung MC . E1A and p202 as anti-metastasis genes. In: Curiel D, Douglas J eds. Cancer Gene Therapy. 2nd edn. Totowa, NJ: Humana Press; 2004 (in press).

    Google Scholar 

  14. Villaret D, Glisson B, Kenady D, et al. A multicenter phase II study of tgDCC-E1A for the intratumoral treatment of patients with recurrent head and neck squamous cell carcinoma. Head Neck. 2002;24:661–669.

    Article  PubMed  Google Scholar 

  15. Yoo GH, Hung MC, Lopez-Berestein G, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res. 2001;7:1237–1245.

    CAS  PubMed  Google Scholar 

  16. Hortobagyi GN, Ueno NT, Xia W, et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol. 2001;19:3422–3433.

    Article  CAS  PubMed  Google Scholar 

  17. Lowe SW, Ruley HE, Jacks T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–967.

    Article  CAS  PubMed  Google Scholar 

  18. Frisch SM, Dolter KE . Adenovirus E1a-mediated tumor suppression by a c-erbB-2/neu-independent mechanism. Cancer Res. 1995;55:5551–5555.

    CAS  PubMed  Google Scholar 

  19. Sanchez-Prieto R, Vargas JA, Carnero A, Marchetti E, et al. Modulation of cellular chemoresistance in keratinocytes by activation of different oncogenes. Int J Cancer. 1995;60:235–243.

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Prieto R, Lleonart M, Ramon y Cajal S . Lack of correlation between p53 protein level and sensitivity of DNA-damaging agents in keratinocytes carrying adenovirus E1a mutants. Oncogene. 1995;11:675–682.

    CAS  PubMed  Google Scholar 

  21. Brader KR, Wolf JK, Hung MC, et al. Adenovirus E1A expression enhances the sensitivity of an ovarian cancer cell line to multiple cytotoxic agents through an apoptotic mechanism. Clin Cancer Res. 1997;3:2017–2024.

    CAS  PubMed  Google Scholar 

  22. Ueno N, Yu D Hung MC . Chemosensitization of Her-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 E1A. Oncogene. 1997;15:953–960.

    Article  CAS  PubMed  Google Scholar 

  23. Ueno NT, Bartholomeusz C, Herrmann JL, et al. E1A-mediated paclitaxel sensitization in Her-2/neu-overexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res. 2000;6:250–259.

    CAS  PubMed  Google Scholar 

  24. Zhou Z, Jia SF, Hung MC, et al. E1A sensitizes HER2/neu-overexpressing Ewing's sarcoma cells to topoisomerase II-targeting anticancer drugs. Cancer Res. 2001;61:3394–3398.

    CAS  PubMed  Google Scholar 

  25. Viniegra JG, Losa JH, Sanchez-Arevalo VJ, et al. Modulation of PI3K/Akt pathway by E1a mediates sensitivity to cisplatin. Oncogene. 2002;21:7131–7136.

    Article  CAS  Google Scholar 

  26. Liao Y, Hung MC . Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol Cell Biol. 2003;23:6836–6848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee W, Tai DI, Tsai SL, et al. Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine. Cancer Res. 2003;63:6229–6236.

    CAS  PubMed  Google Scholar 

  28. Zou Y, Peng H, Zhou B, et al. Systemic tumor suppression by the preapoptotic gene bik. Cancer Res. 2002;62:8–12.

    CAS  PubMed  Google Scholar 

  29. Zou Y, Peng H, Zhou B, et al. Correction for Zou et al., Cancer Res. 62(1) 8–12. Cancer Res.. 2002;62:4167.

    CAS  Google Scholar 

  30. Li Y, Wen Y, Zhou BP, Kuo HP, Ding Q, Hung MC . Enhancement of Bik antitumor effect by Bik mutants. Cancer Res. 2003;63:7630–7633.

    CAS  PubMed  Google Scholar 

  31. Meric F, Liao Y, Lee WP, et al. Adenovirus 5 early region 1A does not induce expression of the Ewing sarcoma fusion product EWS-FLI1 in breast and ovarian cancer cell lines. Clin Cancer Res. 2000;6:3832–3836.

    CAS  PubMed  Google Scholar 

  32. Nahle Z, Polakoff J, Davuluri RV, et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol. 2002;4:859–864.

    Article  CAS  PubMed  Google Scholar 

  33. Deng J, Xia W, Hung MC . Adenovirus 5 E1A-mediated tumor suppression associated with E1A-mediated apoptosis in vivo. Oncogene. 1998;17:2167–2175.

    Article  CAS  PubMed  Google Scholar 

  34. Teodoro J, Shore GC, Branton PE . Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene. 1995;11:467–474.

    CAS  PubMed  Google Scholar 

  35. McCurrach ME, Connor TMF, Knudson CM, et al. Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci USA. 1997;94:2345–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fearnhead H, Rodriguez J, Govek EE, et al. Oncogene-dependent apoptosis is mediated by caspase-9. Proc Natl Acad Sci USA. 1998;95:13664–13669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Stanchina E, McCurrach ME, Zindy F, et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 1998;12:2434–2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duelli DM, Lazebnik YA . Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol. 2000;2:859–862.

    Article  CAS  PubMed  Google Scholar 

  39. Putzer BM, Stiewe T, Parssanedjad K, et al. E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products. Cell Death Differ. 2000;7:177–188.

    Article  CAS  PubMed  Google Scholar 

  40. Lassus P, Opitz-Araya X, Lazebnik Y . Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science. 2002;297:1352–1354.

    Article  CAS  PubMed  Google Scholar 

  41. Najafi S, Li Z, Makino K, Shao R, Hung MC . The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells. Biochem Biophys Res Commun. 2003;305:1099–1104.

    Article  CAS  PubMed  Google Scholar 

  42. Blagosklonny M, Fojo T . Molecular effects of paclitaxol: myths and reality (a critical review). Int J Cancer. 1999;83:151–156.

    Article  CAS  PubMed  Google Scholar 

  43. Yu D, Hung MC . Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene. 2000;19:6115–6121.

    Article  CAS  PubMed  Google Scholar 

  44. Yu D, Hung MC . Role of erbB2 in breast cancer chemosensitivity. BioEssays. 2000;22:673–680.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Breast Cancer Foundation, Inc., NIH Grant RO1-CA58880, the SPORE grant for ovarian cancer research P50 CA83639 and Cancer Center Supporting Grant CA16772 from the National Institutes of Health (to MCH) and DAMD17-01-1-0300 from the United States Department of Defense Army Breast Cancer Research Program (to YL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mien-Chie Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Y., Zou, YY., Xia, WY. et al. Enhanced paclitaxel cytotoxicity and prolonged animal survival rate by a nonviral-mediated systemic delivery of E1A gene in orthotopic xenograft human breast cancer. Cancer Gene Ther 11, 594–602 (2004). https://doi.org/10.1038/sj.cgt.7700743

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700743

Keywords

This article is cited by

Search

Quick links