Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-specific gene therapy for uterine cervical cancer using MN/CA9-directed replication-competent adenovirus

Abstract

Although gene therapies using tissue-specific promoters have been reported to be a promising tool for treating cancers, few studies have explored this possibility for uterine cervical cancer. MN/CA9 is a transmembrane glycoprotein that was first identified in the human cervical carcinoma cell line, HeLa. Since MN/CA9 protein is highly expressed in uterine cervical cancer tissues, but not in normal cervix, we constructed a tumor-specific replication-competent adenoviral vector utilizing MN/CA9 promoter (Ad-MN/CA9-E1a), which can replicate only in MN/CA9-expressing cells. Infection of Ad-MN/CA9-E1a to MN/CA9-positive uterine cervical cancer cells (HeLa, C-33 A and SiHa) resulted in much stronger Ad5 E1a protein expressions compared with MN/CA9-negative cells (SK-RC-29), suggesting a tissue-specific replication of this recombinant adenovirus. In vitro cytotoxicity assay revealed that the growth of MN/CA9-positive cells was significantly inhibited with 0.01–1 MOI of Ad-MN/CA9-E1a, but the growth of MN/CA9-negative cells (SK-RC-29) could only be inhibited by as many as 100 MOI. Intratumoral injection of Ad-MN/CA9-E1a effectively induced growth delay of HeLa tumors in nude mice. These results suggest that a novel replication-competent adenoviral vector mediated by MN/CA9 promoter, Ad-MN/CA9-E1a, can selectively replicate in MN/CA9-expressing tumors with cytotoxic effects and may be utilized for the treatment of uterine cervical cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, et al. Cancer statistics, 2000. CA Cancer J Clin. 2000;50:7–33.

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM, Pisani P, Ferlay J . Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80:827–841.

    Article  CAS  PubMed  Google Scholar 

  3. Orr Jr JW, Shingleton HM, Hatch KD, et al. Correlation of perioperative morbidity and conization to radical hysterectomy interval. Obstet Gynecol. 1982;59:726–731.

    PubMed  Google Scholar 

  4. Forney JP . The effect of radical hysterectomy on bladder physiology. Am J Obstet Gynecol. 1980;138:374–382.

    Article  CAS  PubMed  Google Scholar 

  5. Ralph G, Tamussino K, Lichtenegger W . Urological complications after radical hysterectomy with or without radiotherapy for cervical cancer. Arch Gynecol Obstet. 1990;248:61–65.

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen HN, Nordqvist SR . Chemotherapy of advanced and recurrent cervical carcinoma. Semin Surg Oncol. 1999;16:247–250.

    Article  CAS  PubMed  Google Scholar 

  7. Omura GA . Chemotherapy for stage IVB or recurrent cancer of the uterine cervix. J Natl Cancer Inst Monogr. 1996;21:123–126.

    Google Scholar 

  8. Der CJ, Stanbridge EJ . A tumor-specific membrane phosphoprotein marker in human cell hybrids. Cell. 1981;26:429–438.

    Article  CAS  PubMed  Google Scholar 

  9. Opavsky R, Pastorekova S, Zelnik V, et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics. 1996;33:480–487.

    Article  CAS  PubMed  Google Scholar 

  10. Pastorek J, Pastorekova S, Callebaut I, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9:2877–2888.

    CAS  PubMed  Google Scholar 

  11. Liao SY, Brewer C, Zavada J, et al. Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol. 1994;145:598–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liao SY, Stanbridge EJ . Expression of MN/CA9 protein in Papanicolaou smears containing atypical glandular cells of undetermined significance is a diagnostic biomarker of cervical dysplasia and neoplasia. Cancer. 2000;88:1108–1121.

    Article  CAS  PubMed  Google Scholar 

  13. McKiernan JM, Buttyan R, Bander NH, et al. Expression of the tumor-associated gene MN: a potential biomarker for human renal cell carcinoma. Cancer Res. 1997;57:2362–2365.

    CAS  PubMed  Google Scholar 

  14. Uemura H, Nakagawa Y, Yoshida K, et al. MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br J Cancer. 1999;81:741–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turner JR, Odze RD, Crum CP, et al. MN antigen expression in normal, preneoplastic, and neoplastic esophagus: a clinicopathological study of a new cancer-associated biomarker. Hum Pathol. 1997;28:740–744.

    Article  CAS  PubMed  Google Scholar 

  16. Vermylen P, Roufosse C, Burny A, et al. Carbonic anhydrase IX antigen differentiates between preneoplastic malignant lesions in non-small cell lung carcinoma. Eur Respir J. 1999;14:806–811.

    Article  CAS  PubMed  Google Scholar 

  17. Saarnio J, Parkkila S, Parkkila AK, et al. Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol. 1998;153:279–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartosova M, Parkkila S, Pohlodek K, et al. Expression of carbonic anhydrase IX in breast is associated with malignant tissues and is related to overexpression of c-erbB2. J Pathol. 2002;197:314–321.

    Article  CAS  PubMed  Google Scholar 

  19. Vile RG, Russell SJ, Lemoine NR . Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000;7:2–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang WW . Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther. 1999;6:113–138.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Akbulut H, Tang Y, et al. Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma. Mol Ther. 2002;6:386–393.

    Article  CAS  PubMed  Google Scholar 

  22. Kirn D . Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene. 2000;19:6660–6669.

    Article  CAS  PubMed  Google Scholar 

  23. Ebert T, Bander NH, Finstad CL, et al. Establishment and characterization of human renal cancer and normal kidney cell lines. Cancer Res. 1990;50:5531–5536.

    CAS  PubMed  Google Scholar 

  24. Fallaux FJ, Kranenburg O, Cramer SJ, et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther. 1996;7:215–222.

    Article  CAS  PubMed  Google Scholar 

  25. Fallaux FJ, Bout A, van der Velde I, et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther. 1998;9:1909–1917.

    Article  CAS  PubMed  Google Scholar 

  26. Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994;91:8802–8806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang WW, Fang X, Branch CD, et al. Generation and identification of recombinant adenovirus by liposome-mediated transfection and PCR analysis. Biotechniques. 1993;15:868–872.

    CAS  PubMed  Google Scholar 

  28. Ko SC, Cheon J, Kao C, et al. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res. 1996;56:4614–4619.

    CAS  PubMed  Google Scholar 

  29. Rodriguez R, Schuur ER, Lim HY, et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 1997;57:2559–2563.

    CAS  PubMed  Google Scholar 

  30. Hallenbeck PL, Chang YN, Hay C, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721–1733.

    Article  CAS  PubMed  Google Scholar 

  31. Loncaster JA, Harris AL, Davidson SE, et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 2001;61:6394–6399.

    CAS  PubMed  Google Scholar 

  32. Stanbridge EJ, Der CJ, Doersen CJ, et al. Human cell hybrids: analysis of transformation and tumorigenicity. Science. 1982;215:252–259.

    Article  CAS  PubMed  Google Scholar 

  33. Pastorekova S, Zavadova Z, Kostal M, et al. A novel quasi-viral agent, MaTu, is a two-component system. Virology. 1992;187:620–626.

    Article  CAS  PubMed  Google Scholar 

  34. Zavada J, Zavadova Z, Pastorekova S, et al. Expression of MaTu-MN protein in human tumor cultures and in clinical specimens. Int J Cancer. 1993;54:268–274.

    Article  CAS  PubMed  Google Scholar 

  35. Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36:59–72.

    Article  CAS  PubMed  Google Scholar 

  36. Shirakawa T, Gardner TA, Ko SC, et al. Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine gene therapy is superior to thymidine kinase plus acyclovir in a human renal cell carcinoma model. J Urol. 1999;162:949–954.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Hee Jae Joo, Department of Pathology, for assistance in the preparation and interpretation of histologic studies. This work was supported by 2001 grant from the Department of Medical Sciences, The Graduate School, Ajou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, H., Ahn, M., Chung, H. et al. Tumor-specific gene therapy for uterine cervical cancer using MN/CA9-directed replication-competent adenovirus. Cancer Gene Ther 11, 532–538 (2004). https://doi.org/10.1038/sj.cgt.7700732

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700732

Keywords

This article is cited by

Search

Quick links