Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Concurrent delivery of tumor antigens and activation signals to dendritic cells by irradiated CD40 ligand-transfected tumor cells resulted in efficient activation of specific CD8+ T cells

Abstract

To improve the efficacy of tumor cell-based and dendritic cell (DC)-based cancer vaccines, this study explored the potential of a new cancer vaccine strategy, that is, the use of CD40 ligand-transfected tumor (CD40L-tumor) cells to simultaneously deliver both tumor-derived antigens (Ag) and maturation stimuli to DCs. Materials from frozen/thawed or irradiated human tumor cells, with or without surface CD40L, were internalized efficiently by immature DCs after coincubation. However, during the internalization process, only coculturing with irradiated CD40L-tumor cells resulted in concurrent, optimal DC maturation and production of proinflammatory chemokines and pro-Th1 cytokines, such as IL-6, IL-8, IL-12, IFN-γ, and TNF-α. These activated DCs were the most potent cells to support the growth of CD8+, IFN-γ-producing T cells, and to process tumor Ag for the generation of specific cytotoxic T cells in vitro. Animals vaccinated with irradiated CD40L-tumor cell-pulsed DCs were better protected against subsequent challenge of a weakly immunogenic tumor cell line than animals vaccinated with irradiated CD40L-tumor cells alone. Thus, our results strongly support the future clinical application of using DCs pulsed with irradiated CD40L-tumor cells as a cancer vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Palucka K, Banchereau J . Dendritic cells: a link between innate and adaptive immunity. J Clin Immunol. 1999;19:12–25.

    Article  CAS  Google Scholar 

  2. DeMatos P, Abdel-Wahab Z, Vervaert C, et al. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol. 1998;185:65–74.

    Article  CAS  Google Scholar 

  3. DeMatos P, Abdel-Wahab Z, Vervaert C, et al. Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol. 1998;68:79–91.

    Article  CAS  Google Scholar 

  4. Fields RC, Shimizu K, Mule JJ . Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA. 1998;95:9482–9487.

    Article  CAS  Google Scholar 

  5. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2:52–58.

    Article  CAS  Google Scholar 

  6. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells (see comments). Nat Med. 1998;4:328–332.

    Article  CAS  Google Scholar 

  7. Tjoa BA, Simmons SJ, Bowes VA, et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate. 1998;36:39–44.

    Article  CAS  Google Scholar 

  8. Schott M, Feldkamp J, Schattenberg D, et al. Induction of cellular immunity in a parathyroid carcinoma treated with tumor lysate-pulsed dendritic cells. Euro J Endocrinol. 2000;142:300–306.

    Article  CAS  Google Scholar 

  9. Holtl L, Rieser C, Papesh C, et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol. 1999;161:777–782.

    Article  CAS  Google Scholar 

  10. Nair SK, Boczkowski D, Morse M, et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol. 1998;16:364–369.

    Article  CAS  Google Scholar 

  11. Inaba K, Turley S, Yamaide F, et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med. 1998;188:2163–2173.

    Article  CAS  Google Scholar 

  12. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998;392:86–89.

    Article  CAS  Google Scholar 

  13. Rovere P, Vallinoto C, Bondanza A, et al. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol. 1998;161:4467–4471.

    CAS  Google Scholar 

  14. Russo V, Tanzarella S, Dalerba P, et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc Natl Acad Sci USA. 2000;97:2185–2190.

    Article  CAS  Google Scholar 

  15. Jenne L, Arrighi JF, Jonuleit H, et al. Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res. 2000;60:4446–4452.

    CAS  Google Scholar 

  16. Gong J, Chen D, Kashiwaba M, et al. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med. 1997;3:558–561.

    Article  CAS  Google Scholar 

  17. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids (see comments). Nat Med. 2000;6:332–336.

    Article  CAS  Google Scholar 

  18. Jaffee EM, Abrams R, Cameron J, et al. A phase I clinical trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum Gene Ther. 1998;9:1951–1971.

    Article  CAS  Google Scholar 

  19. Greten TF, Jaffee EM . Cancer vaccines. J Clin Oncol. 1999;17:1047–1060.

    Article  CAS  Google Scholar 

  20. Parmiani G, Rodolfo M, Melani C . Immunological gene therapy with ex vivo gene-modified tumor cells: a critique and a reappraisal. Hum Gene Ther. 2000;11:1269–1275.

    Article  CAS  Google Scholar 

  21. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89:21–39.

    Article  CAS  Google Scholar 

  22. Chiodoni C, Paglia P, Stoppacciaro A, et al. Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J Exp Med. 1999;190:125–133.

    Article  CAS  Google Scholar 

  23. Fujita N, Kagamu H, Yoshizawa H, et al. CD40 ligand promotes priming of fully potent antitumor CD4(+) T cells in draining lymph nodes in the presence of apoptotic tumor cells. J Immunol. 2001;167:5678–5688.

    Article  CAS  Google Scholar 

  24. Grangeon C, Cormary C, Douin-Echinard V, et al. In vivo induction of antitumor immunity and protection against tumor growth by injection of CD154-expressing tumor cells. Cancer Gene Ther. 2002;9:282–288.

    Article  CAS  Google Scholar 

  25. de Saint-Vis B, Fugier-Vivier I, Massacrier C, et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol. 1998;160:1666–1676.

    CAS  PubMed  Google Scholar 

  26. Mackey MF, Gunn JR, Maliszewsky C, et al. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol. 1998;161:2094–2098.

    CAS  Google Scholar 

  27. Mackey MF, Barth Jr RJ, Noelle RJ . The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol. 1998;63:418–428.

    Article  CAS  Google Scholar 

  28. Moodycliffe AM, Shreedhar V, Ullrich SE, et al. CD40–CD40 ligand interactions in vivo regulate migration of antigen-bearing dendritic cells from the skin to draining lymph nodes. J Exp Med. 2000;191:2011–2020.

    Article  CAS  Google Scholar 

  29. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell (see comments). Nature. 1998;393:474–478.

    Article  CAS  Google Scholar 

  30. Fisk B, Blevins TL, Wharton JT, et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med. 1995;181:2109–2117.

    Article  CAS  Google Scholar 

  31. Bartholomew JS, Stacey SN, Coles B, et al. Identification of a naturally processed HLA A0201-restricted viral peptide from cells expressing human papillomavirus type 16 E6 oncoprotein. Eur J Immunol. 1994;24:3175–3179.

    Article  CAS  Google Scholar 

  32. Giatromanolaki A, Koukourakis MI, O'Byrne K, et al. Non-small cell lung cancer: c-erbB-2 overexpression correlates with low angiogenesis and poor prognosis. Anticancer Res. 1996;16:3819–3825.

    CAS  Google Scholar 

  33. Lodge PA, Jones LA, Bader RA, et al. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res. 2000;60:829–833.

    CAS  PubMed  Google Scholar 

  34. Fong L, Brockstedt D, Benike C, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001;166:4254–4259.

    Article  CAS  Google Scholar 

  35. Steinman RM, Turley S, Mellman I, et al. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191:411–416.

    Article  CAS  Google Scholar 

  36. Sauter B, Albert ML, Francisco L, et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells (see comments). J Exp Med. 2000;191:423–434.

    Article  CAS  Google Scholar 

  37. Somersan S, Larsson M, Fonteneau JF, et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol. 2001;167:4844–4852.

    Article  CAS  Google Scholar 

  38. Cella M, Salio M, Sakakibara Y, et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med. 1999;189:821–829.

    Article  CAS  Google Scholar 

  39. Curtsinger JM, Schmidt CS, Mondino A, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol. 1999;162:3256–3262.

    CAS  PubMed  Google Scholar 

  40. Rovere P, Sabbadini MG, Vallinoto C, et al. Delayed clearance of apoptotic lymphoma cells allows cross-presentation of intracellular antigens by mature dendritic cells. J Leukoc Biol. 1999;66:345–349.

    Article  CAS  Google Scholar 

  41. Gallucci S, Lolkema M, Matzinger P . Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999;5:1249–1255.

    Article  CAS  Google Scholar 

  42. Vegh Z, Mazumder A . Generation of tumor cell lysate-loaded dendritic cells preprogrammed for IL-12 production and augmented T cell response. Cancer Immunol Immunother. 2003;52:67–79.

    CAS  PubMed  Google Scholar 

  43. Salio M, Cerundolo V, Lanzavecchia A . Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. Eur J Immunol. 2000;30:705–708.

    Article  CAS  Google Scholar 

  44. Hoffmann TK, Meidenbauer N, Muller-Berghaus J, et al. Proinflammatory cytokines and CD40 ligand enhance cross-presentation and cross-priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother. 2001;24:162–171.

    Article  CAS  Google Scholar 

  45. Feng H, Zeng Y, Graner MW, et al. Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood. 2002;100:4108–4115.

    Article  CAS  Google Scholar 

  46. Albert ML, Jegathesan M, Darnell RB . Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol. 2001;2:1010–1017.

    Article  CAS  Google Scholar 

  47. Felzmann T, Buchberger M, Lehner M, et al. Functional maturation of dendritic cells by exposure to CD40L transgenic tumor cells, fibroblasts or keratinocytes. Cancer Lett. 2001;168:145–154.

    Article  CAS  Google Scholar 

  48. Quentmeier H, Klaucke J, Muhlradt PF, et al. Role of IL-6, IL-2, and IL-4 in the in vitro induction of cytotoxic T cells. J Immunol. 1992;149:3316–3320.

    CAS  PubMed  Google Scholar 

  49. Bass HZ, Yamashita N, Clement LT . Heterogeneous mechanisms of human cytotoxic T lymphocyte generation. II. Differential effects of IL-6 on the helper cell-independent generation of CTL from CD8+ precursor subpopulations. J Immunol. 1993;151:2895–2903.

    CAS  PubMed  Google Scholar 

  50. Ming JE, Steinman RM, Granelli-Piperno A, et al. IL-6 enhances the generation of cytolytic T lymphocytes in the allogeneic mixed leucocyte reaction. Clin Exp Immunol. 1992;89:148–153.

    Article  CAS  Google Scholar 

  51. Gajewski TF, Renauld JC, Van Pel A, et al. Costimulation with B7-1, IL-6, and IL-12 is sufficient for primary generation of murine antitumor cytolytic T lymphocytes in vitro. J Immunol. 1995;154:5637–5648.

    CAS  PubMed  Google Scholar 

  52. Allavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol. 1998;28:359–369.

    Article  CAS  Google Scholar 

  53. Buelens C, Verhasselt V, De Groote D, et al. Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granulocyte/macrophage-colony-stimulating factor. Eur J Immunol. 1997;27:756–762.

    Article  CAS  Google Scholar 

  54. Morel AS, Quaratino S, Douek DC, et al. Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells: definition of a maturative step. Eur J Immunol. 1997;27:26–34.

    Article  CAS  Google Scholar 

  55. Kalinski P, Schuitemaker JH, Hilkens CM, et al. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol. 1998;161:2804–2809.

    CAS  Google Scholar 

  56. Brossart P, Zobywalski A, Grunebach F, et al. Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T-cell stimulatory capacity of dendritic cells. Cancer Res. 2000;60:4485–4492.

    CAS  PubMed  Google Scholar 

  57. Fujii S, Shimizu K, Shimizu T, et al. Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood. 2001;98:2143–2151.

    Article  CAS  Google Scholar 

  58. Arienti F, Belli F, Napolitano F, et al. Vaccination of melanoma patients with interleukin 4 gene-transduced allogeneic melanoma cells. Hum Gene Ther. 1999;10:2907–2916.

    Article  CAS  Google Scholar 

  59. Nouri-Shirazi M, Banchereau J, Bell D, et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol. 2000;165:3797–3803.

    Article  CAS  Google Scholar 

  60. Berard F, Blanco P, Davoust J, et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med. 2000;192:1535–1544.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank a former collaborator, Dr Kun-Tai Lu, at the National Taiwan University Hospital, for providing malignant pleural effusions and a former senior technician, Mrs Den-Mei Yang, for her technical assistance in establishing the human lung cancer cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko-Jiunn Liu.

Additional information

This work was supported by intramural grants from the National Health Research Institutes, Taipei, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, KJ., Lu, LF., Cheng, HT. et al. Concurrent delivery of tumor antigens and activation signals to dendritic cells by irradiated CD40 ligand-transfected tumor cells resulted in efficient activation of specific CD8+ T cells. Cancer Gene Ther 11, 135–147 (2004). https://doi.org/10.1038/sj.cgt.7700663

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700663

Keywords

This article is cited by

Search

Quick links