Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Kinase-dead PKB gene therapy combined with hyperthermia for human breast cancer

Abstract

We have previously demonstrated that protein kinase B (PKB) is a mediator of heat-induced apoptosis for human breast cancer cells. To investigate the therapeutic potential of abrogating the function of this important survival protein, a novel replication-deficient adenovirus was constructed, wherein a mutant, kinase-inactive PKB gene (AAA) was inserted downstream of the CMV promoter. Two human breast cancer cell lines, MCF-7 and MDA-468, were treated, along with the MCF-10 serving as a “normal” mammary epithelial comparator. Apoptosis was increased with adv.AAA (25 PFU/cell) infection alone, but was significantly enhanced with the addition of heat exposure. Differential survival was observed with the MDA-468 cancer cells being more sensitive than the MCF-7 cells. The MCF-10 cells, in contrast, were most resistant to these treatments. Results from the clonogenic assay reflected the apoptosis data, with an apparent additive interaction between adv.AAA and hyperthermia treatments, again with greater differential sensitivity of the malignant, compared to the “normal” mammary epithelial cells. Heat or adv.β-gal treatments led to phosphorylation of PKB and Forkhead, but this phosphorylation was reduced with adv.AAA therapy. In parallel, the combination of adv.AAA and heat treatment reduced PKB kinase activity more so than with either heat or adv.β-gal alone. In conclusion, our results demonstrate that inhibition of the PKB-dependent survival pathway will promote apoptosis and thermosensitization in malignant breast cancer cells, with relative sparing of their normal counterpart, suggesting that a therapeutic gain could be achievable using this therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Valdagni R, Amichetti M, Pani G . Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical. Int J Radiat Oncol, Biol, Phys. 1988;15:13–15.

    Article  CAS  Google Scholar 

  2. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA . Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective randomised multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 2000;355:1119–1125.

    Article  CAS  PubMed  Google Scholar 

  3. Sneed PK, Stauffer PR, McDermott MW, et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/− hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1998;40:287–295.

    Article  CAS  PubMed  Google Scholar 

  4. Overgaard J, Gonzales G, Hulshof MCCM, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet. 1995;345:540–543.

    Article  CAS  PubMed  Google Scholar 

  5. Group ICH, Vernon C, Hand J, et al. Radiotherapy with or without hyperthmia in the treatment of superficial localized breast cancer – results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 1996;35:731–744.

    Article  Google Scholar 

  6. Liu F-F, Wilson B . Hyperthermia and Photodynamic Therapy. In: annock IFT, Hill RP, eds. The Basic Science of Oncology. New York: McGraw-Hill; 1998.

    Google Scholar 

  7. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14:381–395.

    Article  CAS  PubMed  Google Scholar 

  8. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation survival and insulin responses? J Cell Sci. 2001;114:2903–2910.

    CAS  PubMed  Google Scholar 

  9. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–868.

    Article  CAS  PubMed  Google Scholar 

  10. Kane LP, Shapiro VS, Stokoe D, Weiss A . Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol. 1999;9:601–604.

    Article  CAS  PubMed  Google Scholar 

  11. Datta S, Dudek H, Tao X, et al. kt phosphorylationof BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–241.

    Article  CAS  PubMed  Google Scholar 

  12. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997;278:687–689.

    Article  CAS  PubMed  Google Scholar 

  13. Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27 impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med. 2002;8:1153–1160.

    Article  CAS  PubMed  Google Scholar 

  14. Ma N, Jin J, Lu F, Woodgett J, Liu FF . The role of protein kinase B (PKB) in modulating heat sensitivity in a human breast cancer cell line. Int J Radiat Oncol Biol Phys. 2001;50:1041–1050.

    Article  CAS  PubMed  Google Scholar 

  15. Konishi H, Matsuzaki H, Tanaka M, et al. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci. 1996;93:7639–7643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Konishi H, Matsuzaki H, Tanaka M, et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett. 1997;410:493–498.

    Article  CAS  PubMed  Google Scholar 

  17. Brade A, Klamut H, Liu F-F . Heat-directed cancer gene therapy. In: Third Canadian Gene Therapy Symposium, Montreal, Canada, 26–28 June 1998.

  18. Li J-H, Shi W, Chia M, et al. A novel EBV-targeted adenoviral vector utilizing a non-cleavable FasL for nasopharyngeal cancer therapy. In: American Association for Cancer Research, San Francisco, California, 6–9 April 2002.

  19. Li J-H, Li P, Klamut H, Liu F-F . Cytotoxic effects of Ad5CMV-p53 expression in two human nasopharyngeal carcinoma cell lines. Clin Cancer Res. 1997;3:507–514.

    CAS  PubMed  Google Scholar 

  20. Li JH, Lax SA, Kim J, Klamut H, Liu FF . The effects of combining ionizing radiation and adenoviral p53 therapy in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 1999;43:607–616.

    Article  CAS  PubMed  Google Scholar 

  21. Kerr J, Winterford C, Harmon B . Apoptosis: its significance in cancer and cancer therapy. Cancer. 1994;73:2013–2026.

    Article  CAS  PubMed  Google Scholar 

  22. Liu F-F, Diep K, Hill R . The relationship between thermosensitivity and intracellular pH in cells deficient in Na+/H+ antiport function. Radiother Oncol. 1996;40:75–83.

    Article  CAS  PubMed  Google Scholar 

  23. Bellacosa A, Testa J, Staal S, Tsichlis P . A retoviral oncogene akt encoding a serine–threonine kinase containing an SH2-like region. Science. 1991;254:274–277.

    Article  CAS  PubMed  Google Scholar 

  24. Coffer P, Woodgett J . Molecular cloning characterisation of a novel putative protein–serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991;201:475–481.

    Article  CAS  PubMed  Google Scholar 

  25. Jones P, Jakubowicz T, Pitossi F, Maurer F, Hemmings B . Molecular cloning identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA. 1991;88:4171–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheid MP, Woodgett JR . PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol. 2001;2:760–768.

    Article  CAS  PubMed  Google Scholar 

  27. Shi W, Zhang X, Pintilie M, et al. Dysregulated PTEN-PKB and negative receptor status in human breast cancer. Int J Cancer. 2003;104:195–203.

    Article  CAS  PubMed  Google Scholar 

  28. Perren A, Weng LP, Boag AH, et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol. 1999;155:1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Tenorio G, Stal O . Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer. 2002;86:540–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sherar M, Liu FF, Pintilie M, et al. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys. 1997;39:371–380.

    Article  CAS  PubMed  Google Scholar 

  31. Hutchinson J, Jin J, Cardiff RD, Woodgett JR, Muller WJ . Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol. 2001;21:2203–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN . Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–57.

    Article  CAS  PubMed  Google Scholar 

  33. Bergelson J, Cunningham J, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275:1320–1323.

    Article  CAS  PubMed  Google Scholar 

  34. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins αv 3 and αv 5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319.

    Article  CAS  PubMed  Google Scholar 

  35. Davies MA, Lu Y, Sano T, et al. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis (published erratum appears in Cancer Res 1999 Mar 1;59(5):1167). Cancer Res. 1998;58:5285–5290.

    CAS  PubMed  Google Scholar 

  36. Matsui T, Li L, del M, et al. Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation. 1999;100:2373–2379.

    Article  CAS  PubMed  Google Scholar 

  37. Wu C . Integrin-linked kinase PINCH: partners in regulation of cell–extracellular matrix interaction and signal transduction. J Cell Sci. 1999;112(Part 24):4485–4489.

    CAS  PubMed  Google Scholar 

  38. Persad S, Attwell S, Gray V, et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem. 2001;276:27462–27469.

    Article  CAS  PubMed  Google Scholar 

  39. Kurokawa H, Nishio K, Fukumoto H, Tomonari A, Suzuki T, Saijo N . Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells. Oncol Rep. 1999;6:33–37.

    CAS  PubMed  Google Scholar 

  40. Ohnishi K, Ohnishi T . Heat-induced p53-dependent signal transduction and its role in hyperthermic cancer therapy. Int J Hyperthermia. 2001;17:415–427.

    Article  CAS  PubMed  Google Scholar 

  41. Qi V, Weinrib L, Ma N, Li JH, Klamut H, Liu FF . Adenoviral p53 gene therapy promotes heat-induced apoptosis in a nasopharyngeal carcinoma cell line. Int J Hyperthermia. 2001;17:38–47.

    Article  CAS  PubMed  Google Scholar 

  42. Narita N, Noda I, Ohtsubo T, et al. Analysis of heat-shock related gene expression in head-and-neck cancer using cDNA arrays. Int J Radiat Oncol Biol Phys. 2002;53:190–196.

    Article  CAS  PubMed  Google Scholar 

  43. Sato S, Fujita N, Tsuruo T . Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA. 2000;97:10832–10837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N . Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 2002;277:39858–39866.

    Article  CAS  PubMed  Google Scholar 

  45. West KA, Sianna Castillo S, Dennis PA . Activation of the PI3K/Akt pathway chemotherapeutic resistance. Drug Resist Update. 2002;5:234–248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by funds from the Canadian Breast Cancer Research Initiative and the Canadian Breast Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Fei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, N., Szmitko, P., Brade, A. et al. Kinase-dead PKB gene therapy combined with hyperthermia for human breast cancer. Cancer Gene Ther 11, 52–60 (2004). https://doi.org/10.1038/sj.cgt.7700655

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700655

Keywords

This article is cited by

Search

Quick links