Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-specific adenoviral gene therapy: transcriptional repression of gene expression by utilizing p53-signal transduction pathways

Abstract

Adenoviral gene expression that is repressed by p53 in nontransformed cells could provide a tumor-specific gene therapy approach for a large subset of tumors. Adenoviral infection in vivo induces stabilization of p53, which can be utilized for a strategy that includes p53-dependent expression of a transcriptional repressor and a target promoter, which is highly susceptible for transcriptional repression. Therefore, we constructed different versions of CMV-promoters (CMVgal) with binding sites for GAL4-DBD and investigated 11 GAL4-DBD fusion proteins to elucidate the most effective repressor domain to silence CMVgal activity.The transcriptional repressor GAL4-KRAB-A under control of a p53-dependent promoter facilitates strong CMVgal-mediated gene expression specifically in p53 mutant cells by a double-recombinant adenoviral vector (Ad-RGCdR). GAL4-KRAB-A mediates strong transcriptional repression of Ad-RGCdR in p53 wild-type cells, which could be further enhanced by preactivation of p53-signalling following low-dose chemotherapy prior to adenoviral infection. By utilizing p53 signalling involved in chemotherapy and adenoviral infection, more than 99% of Ad-RGCdR gene expression could be repressed in p53 wild-type cells. Controlled gene expression from CMVgal promoters by transcriptional repression utilizing functional p53 signalling thus provides a very effective tool for tumor-specific adenoviral gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DBD:

DNA-binding domain

RGC:

ribosomal gene cluster

MOI:

multiplicity of infection

mt:

mutant

wt:

wild type

X-gal:

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside

dep.:

dependent

therap.:

therapeutic

Cons.:

consensus

Seq.:

sequence

Luc.:

luciferase

References

  1. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res. 1995;55:5283–5287.

    CAS  PubMed  Google Scholar 

  2. Cao G, Kuriyama S, Cui L, et al. Analysis of the human carcinoembryonic antigen promoter core region in colorectal carcinoma-selective cytosine deaminase gene therapy. Cancer Gene Ther. 1999;6:572–580.

    Article  CAS  PubMed  Google Scholar 

  3. Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers [In Process Citation]. Cancer Res. 2000;60:5359–5364.

    CAS  PubMed  Google Scholar 

  4. Abdul-Ghani R, Ohana P, Matouk I, et al. Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells. Mol Ther. 2000;2:539–544.

    Article  CAS  PubMed  Google Scholar 

  5. Latham JP, Searle PF, Mautner V, James ND . Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res. 2000;60:334–341.

    CAS  PubMed  Google Scholar 

  6. Ido A, Uto H, Moriuchi A, et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res. 2001;61:3016–3021.

    CAS  PubMed  Google Scholar 

  7. Lowe SL, Rubinchik S, Honda T, McDonnell TJ, Dong JY, Norris JS . Prostate-specific expression of Bax delivered by an adenoviral vector induces apoptosis in LNCaP prostate cancer cells. Gene Ther. 2001;8:1363–1371.

    Article  CAS  PubMed  Google Scholar 

  8. Plumb JA, Bilsland A, Kakani R, et al. Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene. 2001;20:7797–7803.

    Article  CAS  PubMed  Google Scholar 

  9. Ueda K, Iwahashi M, Nakamori M, et al. Carcinoembryonic antigen-specific suicide gene therapy of cytosine deaminase/5-fluorocytosine enhanced by the cre/loxP system in the orthotopic gastric carcinoma model. Cancer Res. 2001;61:6158–6162.

    CAS  PubMed  Google Scholar 

  10. Lin T, Gu J, Zhang L, et al. Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res. 2002;62:3620–3625.

    CAS  PubMed  Google Scholar 

  11. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  12. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.

    Article  CAS  PubMed  Google Scholar 

  13. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19:607–614.

    Article  CAS  PubMed  Google Scholar 

  14. Ueda H, Ullrich SJ, Gangemi JD, et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet. 1995;9:41–47.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Wu X, Lin J, Levine AJ . mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol Cell Biol. 1996;16:2445–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steegenga WT, van Laar T, Riteco N, et al. Adenovirus E1A proteins inhibit activation of transcription by p53. Mol Cell Biol. 1996;16:2101–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crook T, Tidy JA, Vousden KH . Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell. 1991;67:547–556.

    Article  CAS  PubMed  Google Scholar 

  18. Pengue G, Calabro V, Bartoli PC, Pagliuca A, Lania L . Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res. 1994;22:2908–2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alland L, Muhle R, Hou Jr H, et al Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997;387:49–55.

    Article  CAS  PubMed  Google Scholar 

  20. Izzo MW, Strachan GD, Stubbs MC, Hall DJ . Transcriptional repression from the c-myc P2 promoter by the zinc finger protein ZF87/MAZ. J Biol Chem. 1999;274:19498–19506.

    Article  CAS  PubMed  Google Scholar 

  21. Denisenko ON, O'Neill B, Ostrowski J, Van SI, Bomsztyk K . Zik1, a transcriptional repressor that interacts with the heterogeneous nuclear ribonucleoprotein particle K protein. J Biol Chem. 1996;271:27701–27706.

    Article  CAS  PubMed  Google Scholar 

  22. Seyfert VL, Allman D, He Y, Staudt LM . Transcriptional repression by the proto-oncogene BCL-6. Oncogene. 1996;12:2331–2342.

    CAS  PubMed  Google Scholar 

  23. Bartholomew C, Kilbey A, Clark AM, Walker M . The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation. Oncogene. 1997;14:569–577.

    Article  CAS  PubMed  Google Scholar 

  24. Galvin KM, Shi Y . Multiple mechanisms of transcriptional repression by YY1. Mol Cell Biol. 1997;17:3723–3732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He GP, Kim S, Ro HS . Cloning and characterization of a novel zinc finger transcriptional repressor. A direct role of the zinc finger motif in repression. J Biol Chem. 1999;274:14678–14684.

    Article  CAS  PubMed  Google Scholar 

  26. Nan X, Campoy FJ, Bird A . MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88:471–481.

    Article  CAS  PubMed  Google Scholar 

  27. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther. 1998;9:2577–2583.

    Article  CAS  PubMed  Google Scholar 

  28. Lichtsteiner S, Wuarin J, Schibler U . The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell. 1987;51:963–973.

    Article  CAS  PubMed  Google Scholar 

  29. Ghazal P, Lubon H, Hennighausen L . Specific interactions between transcription factors and the promoter-regulatory region of the human cytomegalovirus major immediate-early gene. J Virol. 1988;62:1076–1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghazal P, Lubon H, Hennighausen L . Multiple sequence-specific transcription factors modulate cytomegalovirus enhancer activity in vitro. Mol Cell Biol. 1988;8:1809–1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baleja JD, Marmorstein R, Harrison SC, Wagner G . Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature. 1992;356:450–453.

    Article  CAS  PubMed  Google Scholar 

  32. Marmorstein R, Carey M, Ptashne M, Harrison SC . DNA recognition by GAL4: structure of a protein-DNA complex. Nature. 1992;356:408–414.

    Article  CAS  PubMed  Google Scholar 

  33. Liang SD, Marmorstein R, Harrison SC, Ptashine M . DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2 Cys6 binuclear cluster proteins recognizes DNA. Mol Cell Biol. 1996;16:3773–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pengue G, Lania L . Kruppel-associated box-mediated repression of RNA polymerase II promoters is influenced by the arrangement of basal promoter elements. Proc Natl Acad Sci USA. 1996;93:1015–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lowe SW, Bodis S, McClatchey A, et al. p53 status and the efficacy of cancer therapy in vivo. Science. 1994;266:807–810.

    Article  CAS  PubMed  Google Scholar 

  36. Soussi T, Beroud C . Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer. 2001;1:233–240.

    Article  CAS  PubMed  Google Scholar 

  37. Kubicka S, Claas C, Staab S, et al. p53 mutation pattern and expression of c-erbB2 and c-met in gastric cancer: relation to histological subtypes, Helicobacter pylori infection, and prognosis. Dig Dis Sci. 2002;47:114–121.

    Article  CAS  PubMed  Google Scholar 

  38. Kubicka S, Kuhnel F, Zender L, et al. p53 represses CAAT enhancer-binding protein (C/EBP)-dependent transcription of the albumin gene. A molecular mechanism involved in viral liver infection with implications for hepatocarcinogenesis. J Biol Chem. 1999;274:32137–32144.

    Article  CAS  PubMed  Google Scholar 

  39. Kuhnel F, Zender L, Paul Y, et al. NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem. 2000;275:6421–6427.

    Article  CAS  PubMed  Google Scholar 

  40. Morral N, O'Neal WK, Rice K, et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther. 2002;13:143–154.

    Article  CAS  PubMed  Google Scholar 

  41. Wickham TJ, Tzeng E, Shears LL, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol. 1997;71:8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 1998;58:5738–5748.

    CAS  PubMed  Google Scholar 

  43. Einfeld DA, Brough DE, Roelvink PW, Kovesdi I, Wickham TJ . Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J Virol. 1999;73:9130–9136.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol. 2000;74:6875–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cripe TP, Dunphy EJ, Holub AD, et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001;61:2953–2960.

    CAS  PubMed  Google Scholar 

  46. Hemminki A, Dmitriev I, Liu B, Desmond RA, Alemany R, Curiel DT . Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001;61:6377–6381.

    CAS  PubMed  Google Scholar 

  47. Reynolds PN, Nicklin SA, Kaliberova L, et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol. 2001;19:838–842.

    Article  CAS  PubMed  Google Scholar 

  48. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [see comments]. Science. 1996;274:373–376.

    Article  CAS  PubMed  Google Scholar 

  49. Vollmer CM, Ribas A, Butterfield LH, et al. p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res. 1999;59:4369–4374.

    CAS  PubMed  Google Scholar 

  50. Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW . p53-dependent cell death/apoptosis is required for a productive adenovirus infection [see comments]. Nat Med. 1998;4:1068–1072.

    Article  CAS  PubMed  Google Scholar 

  51. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur HH . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol. 1998;72:9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dix BR, O'Carroll SJ, Myers CJ, Edwards SJ, Braithwaite AW . Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res. 2000;60:2666–2672.

    CAS  PubMed  Google Scholar 

  53. Lipinski KS, Djeha AH, Krausz E, et al. Tumour-specific therapeutic adenovirus vectors: repression of transgene expression in healthy cells by endogenous p53. Gene Ther. 2001;8:274–281.

    Article  CAS  PubMed  Google Scholar 

  54. Ramachandra M, Rahman A, Zou A, et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol. 2001;19:1035–1041.

    Article  CAS  PubMed  Google Scholar 

  55. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher III FJ . Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA. 1994;91:4509–4513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A . Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene. 1998;16:2549–2556.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Wilhelm Sander Stiftung (98.046.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kubicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnel, F., Zender, L., Wirth, T. et al. Tumor-specific adenoviral gene therapy: transcriptional repression of gene expression by utilizing p53-signal transduction pathways. Cancer Gene Ther 11, 28–40 (2004). https://doi.org/10.1038/sj.cgt.7700632

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700632

Keywords

This article is cited by

Search

Quick links