Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy of hepatocarcinoma: a long way from the concept to the therapeutical impact

Abstract

Hepatocellular carcinoma (HCC), the most prevalent histological form of primary liver cancer is one of the most frequent cancer worldwide. This pathology still requires the development of new therapeutical approaches. Gene therapy strategies focusing on the genetic manipulation of accessory cells involved in the immune reaction against cancer cells, or on the direct transduction of tumor cells with transgenes able to “suicide” cancer cells have been largely developed for more than ten years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brechot C, Jaffredo F, Lagorce D, et al. Impact of HBV, HCV and GBV-C/HGV on hepatocellular carcinomas in Europe: results of a European concerted action. J Hepatol. 1998;29:173–183.

    CAS  PubMed  Google Scholar 

  2. Colombo M . Hepatocellular carcinoma. J Hepatol. 1992;15:225–236.

    CAS  PubMed  Google Scholar 

  3. Colombo M . Natural history and pathogenesis of hepatitis C virus related hepatocellular carcinoma. J Hepatol. 1999;31:25–30.

    PubMed  Google Scholar 

  4. Deuffic S, Buffat L, Poynard T, et al. Modeling the hepatitis C virus epidemic in France. Hepatology. 1999;29:1596–1601.

    CAS  PubMed  Google Scholar 

  5. El-Serag HB, Mason AC . Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340:745–750.

    CAS  PubMed  Google Scholar 

  6. Bismuth H, Chiche L, Adam R, et al. Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients. Ann Surg. 1993;218:145–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mazzaferro V, Regalia E, Doci R . Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–699.

    CAS  PubMed  Google Scholar 

  8. Michel J, Suc B, Montpeyroux F, et al. Liver resection or transplantation for hepatocellular carcinoma? Retrospective analysis of 215 patients with cirrhosis. J Hepatol. 1997;26:1274–1280.

    CAS  PubMed  Google Scholar 

  9. Okuda K . Hepatocellular carcinoma. J Hepatol. 2000;32:225–237.

    CAS  PubMed  Google Scholar 

  10. Ringe B, Pichlmayr R, Wittekind C, et al. Surgical treatment of hepatocellular carcinoma: experience with liver resection and transplantation in 198 patients. World J Surg. 1991;15:270–285.

    CAS  PubMed  Google Scholar 

  11. Belghiti J, Panis O, Benhamou P, et al. Intrahepatic recurrence after resection of hepatocellular carcinoma complicating cirrhosis. Ann Surg. 1991;214:114–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gozzetti G, Belli L, Capussotti L, Di Carlo V, et al. Liver resection for hepatocellular carcinoma in cirrhotic patients. Ital J Gastroenterol. 1992;24:105–110.

    CAS  PubMed  Google Scholar 

  13. Jiao LR, Hansen PD, Havlik R, et al. Clinical short-term results of radiofrequency ablation in primary and secondary liver tumors. Am J Surg. 1999;177:303–306.

    CAS  PubMed  Google Scholar 

  14. Livraghi T . Percutaneous ethanol injection in hepatocellular carcinoma. Digestion. 1998;59:80–82.

    PubMed  Google Scholar 

  15. Nagata Y, Hiraoka M, Nishimura Y, et al. Clinical results of radiofrequency hyperthermia for malignant liver tumors. Int J Radiat Oncol Biol Phys. 1997;38:359–365.

    CAS  PubMed  Google Scholar 

  16. Pelletier G, Ducreux M, Gay F, et al. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. Groupe CHC. J Hepatol. 1998;29:129–134.

    CAS  PubMed  Google Scholar 

  17. Conway JG, Popp JA, Thurman RG . Microcirculation of hepatic nodules from diethylnitrosamine-treated rats. Cancer Res. 1985;45:3620–3625.

    CAS  PubMed  Google Scholar 

  18. Park YN, Yang CP, Fernandez GJ, et al. Neoangiogenesis and sinusoidal “capillarization” in dysplastic nodules of the liver. Am J Surg Pathol. 1998;22:656–662.

    CAS  PubMed  Google Scholar 

  19. Schaffner F, Popper H . Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44:239–242.

    CAS  PubMed  Google Scholar 

  20. Bilbao R, Gerolami R, Bralet MP, et al. Transduction efficacy, antitumoral effect, and toxicity of adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir therapy of hepatocellular carcinoma: the woodchuck animal model. Cancer Gene Ther. 2000;7:657–662.

    CAS  PubMed  Google Scholar 

  21. Bilbao R, Bustos M, Alzuguren P, et al. A blood–tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther. 2000;7:1824–1832.

    CAS  PubMed  Google Scholar 

  22. Grimm CF, Ortmann D, Mohr L, et al. Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology. 2000;119:1104–1112.

    CAS  PubMed  Google Scholar 

  23. Schmitz V, Barajas M, Wang L, et al. Adenovirus-mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma. Hepatology. 2001;34:72–81.

    CAS  PubMed  Google Scholar 

  24. Ghosh SS, Takahashi M, Thummala NR, et al. Liver-directed gene therapy: promises, problems and prospects at the turn of the century. J Hepatol. 2000;32:238–252.

    CAS  PubMed  Google Scholar 

  25. Solt DB, Hay JB, Farber E . Comparison of the blood supply to diethylnitrosamine-induced hyperplastic nodules and hepatomas and to the surrounding liver. Cancer Res. 1977;37:1686–1691.

    CAS  PubMed  Google Scholar 

  26. Gerolami R, Cardoso J, Bralet MP, et al. Enhanced in vivo adenovirus-mediated gene transfer to rat hepatocarcinomas by selective administration into the hepatic artery. Gene Ther. 1998;5:896–904.

    CAS  PubMed  Google Scholar 

  27. Gouillat C, Manganas D, Zoulim F, et al. Woodchuck hepatitis virus-induced carcinoma as a relevant natural model for therapy of human hepatoma. J Hepatol. 1997;26:1324–1330.

    CAS  PubMed  Google Scholar 

  28. Summers J, Smolec JM, Snyder R . A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci USA. 1978;75:4533–4537.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reid T, Galanis E, Abbruzzese J, et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 2001;8:1618–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Horwitz M . Adenoviridae and their replication. Fundam Virol. 1990;1679–1721.

  31. Jaffe HA, Danel C, Longenecker G, et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet. 1992;1:372–378.

    CAS  PubMed  Google Scholar 

  32. Young LS, Mautner V . The promise and potential hazards of adenovirus gene therapy. Gut. 2001;48:733–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Habib NA, Salama H, Abd El Latif Abu Median A, et al. Clinical trail of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 2002;9:254–259.

    CAS  PubMed  Google Scholar 

  34. Harvey BG, Maroni J, O'Donoghue KA, et al. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther. 2002;13:15–63.

    CAS  PubMed  Google Scholar 

  35. Kochanek S . Development of high-capacity adenoviral vectors for gene therapy. Thromb Haemost. 1999;82:547–551.

    CAS  PubMed  Google Scholar 

  36. Ilan Y, Droguett G, Chowdhury NR, et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci USA. 1997;94:2587–2592.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi M, Sato T, Sagawa T, et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther. 2002;5:627–634.

    CAS  PubMed  Google Scholar 

  38. Tamaoki T . Human alpha-fetoprotein transcriptional regulatory sequences. Application to gene therapy. Adv Exp Med Biol. 2000;465:47–56.

    CAS  PubMed  Google Scholar 

  39. Kaneko S, Tamaoki T . Gene therapy vectors harboring AFP regulatory sequences. Preparation of an adenoviral vector. Mol Biotechnol. 2001;19:323–330.

    CAS  PubMed  Google Scholar 

  40. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res. 1995;55:5283–5287.

    CAS  PubMed  Google Scholar 

  41. Peng D, Qian C, Sun Y, et al. Transduction of hepatocellular carcinoma (HCC) using recombinant adeno-associated virus (rAAV): in vitro and in vivo effects of genotoxic agents. J Hepatol. 2000;32:975–985.

    CAS  PubMed  Google Scholar 

  42. Su H, Lu R, Chang JC, et al. Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adeno-associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice. Proc Natl Acad Sci USA. 1997;94:13891–13896.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jolly D . Viral vector systems for gene therapy. Cancer Gene Ther. 1994;1:51–64.

    CAS  PubMed  Google Scholar 

  44. Ferry N, Heard JM . Liver-directed gene transfer vectors. Hum Gene Ther. 1998;9:1975–1981.

    CAS  PubMed  Google Scholar 

  45. Kitten O, Cosset FL, Ferry N . Highly efficient retrovirus-mediated gene transfer into rat hepatocytes in vivo. Hum Gene Ther. 1997;8:1491–1494.

    CAS  PubMed  Google Scholar 

  46. Tsujinoue H, Kuriyama S, Nakatani T, et al. Amelioration of retrovirus-mediated gene transfer into hepatocellular carcinoma cells. Int J Oncol. 2001;18:801–807.

    CAS  PubMed  Google Scholar 

  47. Kimura O, Yamaguchi Y, Gunning KB, et al. Retroviral delivery of DNA into the livers of transgenic mice bearing premalignant and malignant hepatocellular carcinomas. Hum Gene Ther. 1994;5:845–852.

    CAS  PubMed  Google Scholar 

  48. Cao G, Kuriyama S, Gao J, et al. Gene therapy for hepatocellular carcinoma based on tumour-selective suicide gene expression using the alpha-fetoprotein (AFP) enhancer and a housekeeping gene promoter. Eur J cancer. 2001;37:140–147.

    CAS  PubMed  Google Scholar 

  49. Tsui LV, Kelly M, Zayek N, et al. Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol. 2002;20:53–57.

    CAS  PubMed  Google Scholar 

  50. Kowolik CM, Yee JK . Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by sendai virus f protein. Mol Ther. 2002;5:762–769.

    CAS  PubMed  Google Scholar 

  51. Follenzi A, Sabatino G, Lombardo A, et al. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther. 2002;13:246–260.

    Google Scholar 

  52. Park F, Ohashi K, Kay MA . Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood. 2000;96:1173–1176.

    CAS  PubMed  Google Scholar 

  53. Park F, Ohashi K, Chiu W, et al. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nature Genet. 2000;24:49–52.

    CAS  PubMed  Google Scholar 

  54. Park F, Kay MA . Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol Ther. 2001;4:164–173.

    CAS  PubMed  Google Scholar 

  55. Gerolami R, Uch R, Jordier F, et al. Gene transfer to hepatocellular carcinoma: transduction efficacy and transgene expression kinetics by using retroviral and lentiviral vectors. Cancer Gene Ther. 2000;7:1286–1292.

    CAS  PubMed  Google Scholar 

  56. Nguyen T, Oberholzer J, Birraux J, et al. Highly efficient lentiviral vector-mediated transduction of nondividing, fully reimplantable primary hepatocytes. Mol Ther. 2002;6:199.

    CAS  PubMed  Google Scholar 

  57. Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther. 2001;3:319–322.

    CAS  PubMed  Google Scholar 

  58. VandenDriessche T, Thorrez L, Naldini L, et al. Lentiviral vectors containing the human immunodeficiency virus type-l central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood. 2002;100:813–822.

    CAS  PubMed  Google Scholar 

  59. Sandig V, Brand K, Herwig S, et al. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med. 1997;3:313–319.

    CAS  PubMed  Google Scholar 

  60. Park SW, Lee HK, Kim TG, et al. Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochem Biophys Res Commun. 2001;289:444–450.

    CAS  PubMed  Google Scholar 

  61. Duisit G, Salvetti A, Moullier P, et al. Functional characterization of adeno/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines. Hum Gene Ther. 1999;10:189–200.

    CAS  PubMed  Google Scholar 

  62. Nakamura H, Mullen JT, Chandrasekhar S, et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res. 2001;61:5447–5452.

    CAS  PubMed  Google Scholar 

  63. Pawlik TM, Nakamura H, Yoon SS, et al. Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus. Cancer Res. 2000;60:2790–2795.

    CAS  PubMed  Google Scholar 

  64. Hofman CR, Dileo JP, Li Z, et al. Efficient in vivo gene transfer by PCR amplified fragment with reduced inflammatory activity. Gene Ther. 2001;8:71–74.

    CAS  PubMed  Google Scholar 

  65. Wu J, Zern MA . Modification of liposomes for liver targeting. J Hepatol. 1996;24:757–763.

    CAS  PubMed  Google Scholar 

  66. Wu J, Liu P, Zhu JL, et al. Increased liver uptake of liposomes and improved targeting efficacy by labeling with asialofetuin in rodents. Hepatology. 1998;27:772–778.

    CAS  PubMed  Google Scholar 

  67. Yamashita YI, Shimada M, Hasegawa H, et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res. 2001;61:1005–1012.

    CAS  PubMed  Google Scholar 

  68. Zanta MA, Boussif O, Adib A, et al. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem. 1997;8:839–844.

    CAS  PubMed  Google Scholar 

  69. Herweijer H, Zhang G, Subbotin VM, et al. Time course of gene expression after plasmid DNA gene transfer to the liver. J Gene Med. 2001;3:280–291.

    CAS  PubMed  Google Scholar 

  70. Mohr L, Yoon SK, Eastman SJ, et al. Cationic liposome-mediated gene delivery to the liver and to hepatocellular carcinomas in mice. Hum Gene Ther. 2001;12:799–809.

    CAS  PubMed  Google Scholar 

  71. Harada Y, Iwai M, Tanaka S, et al. Highly efficient suicide gene expression in hepatocellular carcinoma cells by Epstein-Barr virus-based plasmid vectors combined with polyamidoamine dendrimer. Cancer Gene Ther. 2000;7:27–36.

    CAS  PubMed  Google Scholar 

  72. Hirano T, Kaneko S, Kaneda Y, et al. HVJ-liposome-mediated transfection of HSVtk gene driven by AFP promoter inhibits hepatic tumor growth of hepatocellular carcinoma in SCID mice. Gene Ther. 2001;8:80–83.

    CAS  PubMed  Google Scholar 

  73. Wu GY, Zhan P, Sze LL, et al. Incorporation of adenovirus into a ligand-based DNA carrier system results in retention of original receptor specificity and enhances targeted gene expression. J Biol Chem. 1994;269:11542–11546.

    CAS  PubMed  Google Scholar 

  74. Mizuno M, Yoshida J, Sugita K, et al. Growth inhibition of glioma cells transfected with the human beta-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res. 1990;50:7826–7829.

    CAS  PubMed  Google Scholar 

  75. Liu X, Tian P, Yu Y, et al. Enhanced antitumor effect of EGF R-targeted p21WAF-1 and GM-CSF gene transfer in the established murine hepatoma by peritumoral injection. Cancer Gene Ther. 2002;9:100–108.

    CAS  PubMed  Google Scholar 

  76. Mercola D, Cohen JS . Antisense approaches to cancer gene therapy. Cancer Gene Ther. 1995;2:47–59.

    CAS  PubMed  Google Scholar 

  77. He P, Tang ZY, Ye SL, et al. The targeted expression of interleukin-2 in human hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2000;19:183–187.

    CAS  PubMed  Google Scholar 

  78. Kanai F, Shiratori Y, Yoshida Y, et al. Gene therapy for alpha-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Hepatology. 1996;23:1359–1368.

    CAS  PubMed  Google Scholar 

  79. Russell SJ, Cosset FL . Modifying the host range properties of retroviral vectors. J Gene Med. 1999;1:300–311.

    CAS  PubMed  Google Scholar 

  80. Silman NJ, Fooks AR . Biophysical targeting of adenovirus vectors for gene therapy. Curr Opin Mol Ther. 2000;2:524–531.

    CAS  PubMed  Google Scholar 

  81. Arbuthnot P, Bralet M, LeJossic C, et al. In vitro and in vivo hepatoma cell specific expression of a gene transferred with an adenoviral vector. Hum Gene Ther. 1996;7:1503–1514.

    CAS  PubMed  Google Scholar 

  82. Majumdar AS, Hughes DE, Lichtsteiner SP, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 2001;8:568–578.

    CAS  PubMed  Google Scholar 

  83. Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science. 1991;253:49–53.

    CAS  PubMed  Google Scholar 

  84. Hsu IC, Metcalf RA, Sun T, et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature. 1991;350:427–428.

    CAS  PubMed  Google Scholar 

  85. Truant R, Antunovic J, Greenblatt J, et al. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J Virol. 1995;69:1851–1859.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang J, Cao X, Kong X . [Experimental study on the treatment of human hepatocellular carcinoma by fibroblast-mediated human IFN-alpha gene therapy in combination with adoptive chemoimmunotherapy]. Chung Hua Chung Liu Tsa Chih. 1995;17:266–270.

    CAS  PubMed  Google Scholar 

  87. Mitry RR, Sarraf CE, Havlik R, et al. Detection of adenovirus and initiation of apoptosis in hepatocellular carcinoma cells after Ad-p53 treatment. Hepatology. 2000;31:885–889.

    CAS  PubMed  Google Scholar 

  88. Xu GW, Sun ZT, Forrester K, et al. Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology. 1996;24:1264–1268.

    CAS  PubMed  Google Scholar 

  89. Anderson SC, Johnson DE, Harris MP, et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin Cancer Res. 1998;4:1649–1659.

    CAS  PubMed  Google Scholar 

  90. Bao JJ, Zhang WW, Kuo MT . Adenoviral delivery of recombinant DNA into transgenic mice bearing hepatocellular carcinomas. Hum Gene Ther. 1996;7:355–365.

    CAS  PubMed  Google Scholar 

  91. Friedman SL, Shaulian E, Littlewood T, et al. Resistance to p53-mediated growth arrest and apoptosis in Hep 3B hepatoma cells. Oncogene. 1997;15:63–70.

    CAS  PubMed  Google Scholar 

  92. Haupt Y, Rowan S, Oren M . p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene. 1995;10:1563–1571.

    CAS  PubMed  Google Scholar 

  93. Baba M, Iishi H, Tatsuta M . In vivo electroporetic transfer of bcl-2 antisense oligonucleotide inhibits the development of hepatocellular carcinoma in rats. Int J Cancer. 2000;85:260–266.

    CAS  PubMed  Google Scholar 

  94. van der Eb MM, Pietersen AM, Speetjens FM, et al. Gene therapy with apoptin induces regression of xenografted human hepatomas. Cancer Gene Ther. 2002;9:53–61.

    CAS  PubMed  Google Scholar 

  95. Connors T . The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther. 1995;2:702–709.

    CAS  PubMed  Google Scholar 

  96. Freeman SM . Suicide gene therapy. Adv Exp Med Biol. 2000;465:411–422.

    CAS  PubMed  Google Scholar 

  97. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy. J Clin Invest. 2000;105:1161–1167.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Caruso M, Panis Y, Gagandeep S, et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA. 1993;90:7024–7028.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992;256:1550–1552.

    CAS  PubMed  Google Scholar 

  100. Ezzeddine ZD, Martuza RL, Platika D, et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 1991;3:608–614.

    CAS  PubMed  Google Scholar 

  101. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986;46:5276–5281.

    CAS  PubMed  Google Scholar 

  102. Panis Y, Rad AR, Boyer O, et al. Gene therapy for liver tumors. Surg Oncol Clin N Am. 1996;5:461–473.

    CAS  PubMed  Google Scholar 

  103. Brand K, Arnold W, Bartels T, et al. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors. Cancer Gene Ther. 1997;4:9–16.

    CAS  PubMed  Google Scholar 

  104. Gerolami R, Cardoso J, Lewin M, et al. Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res. 2000;60:993–1001.

    CAS  PubMed  Google Scholar 

  105. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-produced cells for treatment of experimental brain tumors. Science. 1992;256:1550–1552.

    CAS  PubMed  Google Scholar 

  106. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990;82:297–300.

    CAS  PubMed  Google Scholar 

  107. Bi WL, Parysek LM, Warnick R, et al. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther. 1993;4:725–731.

    CAS  PubMed  Google Scholar 

  108. Mesnil M, Piccoli C, Tiraby G, et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA. 1996;93:1831–1835.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Touraine RL, Ishii-Morita H, Ramsey WJ, et al. The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther. 1998;5:1705–1711.

    CAS  PubMed  Google Scholar 

  110. Cirenei N, Colombo BM, Mesnil M, et al. In vitro and in vivo effects of retrovirus-mediated transfer of the connexin 43 gene in malignant gliomas: consequences for HSVtk/GCV anticancer gene therapy. Gene Ther. 1998;5:1221–1226.

    CAS  PubMed  Google Scholar 

  111. Fick J, Barker II FG, Dazin P, et al. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci USA. 1995;92:11071–11075.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ghoumari AM, Mouawad R, Zerrouqi A, et al. Actions of HSVtk and connexin43 gene delivery on gap junctional communication and drug sensitization in hepatocellular carcinoma. Gene Ther. 1998;5:1114–1121.

    CAS  PubMed  Google Scholar 

  113. McMasters RA, Saylors RL, Jones KE, et al. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation. Hum Gene Ther. 1998;9:2253–2261.

    CAS  PubMed  Google Scholar 

  114. Gagandeep S, Brew R, Green B, et al. Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect”. Cancer Gene Ther. 1996;3:83–88.

    CAS  PubMed  Google Scholar 

  115. Felzmann T, Ramsey WJ, Blaese RM . Characterization of the antitumor immune response generated by treatment of murine tumors with recombinant adenoviruses expressing HSVtk, IL-2, IL-6 or B7-1. Gene Ther. 1997;4:1322–1329.

    CAS  PubMed  Google Scholar 

  116. Kianmanesh AR, Perrin H, Panis Y, et al. A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther. 1997;8:1807–1814.

    CAS  PubMed  Google Scholar 

  117. Yamamoto S, Suzuki S, Hoshino A, et al. Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic T cells in mice. Cancer Gene Ther. 1997;4:91–96.

    PubMed  Google Scholar 

  118. Qian C, Idoate M, Bilbao R, et al. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther. 1997;8:349–358.

    CAS  PubMed  Google Scholar 

  119. Ohguchi S, Nakatsukasa H, Higashi T, et al. Expression of alpha-fetoprotein and albumin genes in human hepatocellular carcinomas: limitations in the application of the genes for targeting human hepatocellular carcinoma in gene therapy. Hepatology. 1998;27:599–607.

    CAS  PubMed  Google Scholar 

  120. Kuriyama S, Masui K, Kikukawa M, et al. Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene. Gene Ther. 1999;6:525–533.

    CAS  PubMed  Google Scholar 

  121. Aghi M, Hochberg F, Breakefield XO . Prodrug activation enzymes in cancer gene therapy. J Gene Med. 2000;2:148–164.

    CAS  PubMed  Google Scholar 

  122. Kuriyama S, Mitoro A, Yamazaki M, et al. Comparison of gene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma. Scand J Gastroenterol. 1999;34:1033–1041.

    CAS  PubMed  Google Scholar 

  123. Kanai F, Lan KH, Shiratori Y, et al. In vivo gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer Res. 1997;57:461–465.

    CAS  PubMed  Google Scholar 

  124. Mullen CA, Coale M, Lowe R, et al. Tumor expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res. 1994;54:1503–1506.

    CAS  PubMed  Google Scholar 

  125. Topf N, Worgall S, Hackett NR, et al. Regional ‘pro-drug’ gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther. 1998;5:507–513.

    CAS  PubMed  Google Scholar 

  126. Lorenz M, Muller HH . Randomized, multicenter trial of fluorouracil plus leucovorin administered either via hepatic arterial or intravenous infusion versus fluorodeoxyuridine administered via hepatic arterial infusion in patients with nonresectable liver metastases from colorectal carcinoma. J Clin Oncol. 2000;18:243–254.

    CAS  PubMed  Google Scholar 

  127. Mohr L, Rainov NG, Mohr UG, et al. Rabbit cytochrome P450 4B1: A novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma. Cancer Gene Ther. 2000;7:1008–1014.

    CAS  PubMed  Google Scholar 

  128. Krohne TU, Shankara S, Geissler M, et al. Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro. Hepatology. 2001;34:511–518.

    CAS  PubMed  Google Scholar 

  129. Cao G, Kuriyama S, Du P, et al. Complete regression of established murine hepatocellular carcinoma by in vivo tumor necrosis factor alpha gene transfer. Gastroenterology. 1997;112:501–510.

    CAS  PubMed  Google Scholar 

  130. Drozdzik M, Qian C, Xie X, et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol. 2000;32:279–286.

    CAS  PubMed  Google Scholar 

  131. Huang H, Chen SH, Kosai K, et al. Gene therapy for hepatocellular carcinoma: long-term remission of primary and metastatic tumors in mice by interleukin-2 gene therapy in vivo. Gene Ther. 1996;3:980–987.

    CAS  PubMed  Google Scholar 

  132. Kroger A, Ortmann D, Krohne TU, et al. Growth suppression of the hepatocellular carcinoma cell line Hepal-6 by an activatable interferon regulatory factor-1 in mice. Cancer Res. 2001;61:2609–2617.

    CAS  PubMed  Google Scholar 

  133. Qian C, Drozdzik M, Caselmann WH, et al. The potential of gene therapy in the treatment of hepatocellular carcinoma. J Hepatol. 2000;32:344–351.

    CAS  PubMed  Google Scholar 

  134. Tatsumi T, Takehara T, Kanto T, et al. B7-1 (CD80)-gene transfer combined with interleukin-12 administration elicits protective and therapeutic immunity against mouse hepatocellular carcinoma. Hepatology. 1999;30:422–429.

    CAS  PubMed  Google Scholar 

  135. Sakai Y, Kaneko S, Nakamoto Y, et al. Enhanced anti-tumor effects of herpes simplex virus thymidine kinase/ganciclovir system by codelivering monocyte chemoattractant protein-1 in hepatocellular carcinoma. Cancer Gene Ther. 2001;8:695–704.

    CAS  PubMed  Google Scholar 

  136. Wang Z, Qiu SJ, Ye SL, et al. Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma. Cancer Gene Ther. 2001;8:751–758.

    CAS  PubMed  Google Scholar 

  137. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    CAS  PubMed  Google Scholar 

  138. Butterfield LH, Koh A, Meng W, et al. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res. 1999;59:3134–3142.

    CAS  PubMed  Google Scholar 

  139. Vollmer Jr CM, Eilber FC, Butterfield LH, et al. Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res. 1999;59:3064–3067.

    CAS  PubMed  Google Scholar 

  140. Geissler M, Mohr L, Weth R, et al. Immunotherapy directed against alpha-fetoprotein results in autoimmune liver disease during liver regeneration in mice. Gastroenterology. 2001;121:931–939.

    CAS  PubMed  Google Scholar 

  141. Morel A, de La Coste A, Fernandez N, et al. Does preventive vaccination with engineered tumor cells work in cancer-prone transgenic mice? Cancer Gene Ther. 1998;5:92–100.

    CAS  PubMed  Google Scholar 

  142. Goldman CK, Kendall RL, Cabrera G, et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA. 1998;95:8795–8800.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lin P, Buxton JA, Acheson A, et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA. 1998;95:8829–8834.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Griscelli F, Li H, Bennaceur-Griscelli A, et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA. 1998;95:6367–6372.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277–285.

    CAS  PubMed  Google Scholar 

  146. Mukhopadhyay D, Tsiokas L, Sukhatme VP . Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res. 1995;55:6161–6165.

    CAS  PubMed  Google Scholar 

  147. Barajas M, Mazzolini G, Genove G, et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepalology. 2001;33:52–61.

    CAS  Google Scholar 

  148. Ker CG, Chen HY, Juan CC, et al. Role of angiogenesis in hepatitis and hepatocellular carcinoma. Hepatogastroenterology. 1999;46:646–650.

    CAS  PubMed  Google Scholar 

  149. Ebinuma H, Saito H, Saito Y, et al. Antisense oligodeoxynucleotide against c-myc mRNA induces differentiation of human hepatocellular carcinoma cells. Int J Oncol. 1999;15:991–999.

    CAS  PubMed  Google Scholar 

  150. Ellouk-Achard S, Djenabi S, De Oliveira GA, et al. Induction of apoptosis in rat hepatocarcinoma cells by expression of IGF-I antisense c-DNA. J Hepatol. 1998;29:807–818.

    CAS  PubMed  Google Scholar 

  151. Guo HB, Liu F, Chen HL . Increased susceptibility to apoptosis of human hepatocarcinoma cells transfected with antisense N-acetylglucosaminyltransferase V cDNA. Biochem Biophys Res Commun. 1999;264:509–517.

    CAS  PubMed  Google Scholar 

  152. Laird AD, Brown PI, Fausto N . Inhibition of tumor growth in liver epithelial cells transfected with a transforming growth factor alpha antisense gene. Cancer Res. 1994;54:4224–4232.

    CAS  PubMed  Google Scholar 

  153. Maret A, Galy B, Arnaud E, et al. Inhibition of fibroblast growth factor 2 expression by antisense RNA induced a loss of the transformed phenotype in a human hepatoma cell line. Cancer Res. 1995;55:5075–5079.

    CAS  PubMed  Google Scholar 

  154. Upegui-Gonzalez LC, Duc HT, Buisson Y, et al. Use of the IGF-I antisense strategy in the treatment of the hepatocarcinoma. Adv Exp Med Biol. 1998;451:35–42.

    CAS  PubMed  Google Scholar 

  155. Wang HP, Zhang L, Dandri M, et al. Antisense downregulation of N-myc1 in woodchuck hepatoma cells reverses the malignant phenotype. J Virol. 1998;72:2192–2198.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Tietze MK, Wuestefeld T, Paul Y, et al. IkappaBalpha gene therapy in tumor necrosis factor-alpha- and chemotherapy-mediated apoptosis of hepatocellular carcinomas. Cancer Gene Ther. 2000;7:1315–1323.

    CAS  PubMed  Google Scholar 

  157. Yoshikawa H, Matsubara K, Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28:29–35.

    CAS  PubMed  Google Scholar 

  158. Alison MR, Poulsom R, Forbes SJ . Update on hepatic stem cells. Liver. 2001;21:367–373.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Bagnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gérolami, R., Uch, R., Bréchot, C. et al. Gene therapy of hepatocarcinoma: a long way from the concept to the therapeutical impact. Cancer Gene Ther 10, 649–660 (2003). https://doi.org/10.1038/sj.cgt.7700610

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700610

Keywords

This article is cited by

Search

Quick links