Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis

Abstract

Invasion and metastasis of certain tumors are accompanied by increased mRNA protein levels and enzymatic activity of cathepsin L. Cathepsin L has also been suggested to play a role in the proteolytic cascades associated with apoptosis. To investigate the role of cathepsin L in brain tumor invasion and apoptosis, the human glioma cell line, IPTP, was stably transfected with full-length antisense and sense cDNA of cathepsin L. Down-regulation of cathepsin L by antisense cDNA significantly impaired (up to 70%) glioma cell invasion in vitro and markedly increased glioma cell apoptosis induced by staurosporine. Compared to control and parental cell lines, antisense down-regulation of cathepsin L was associated with an earlier induction of caspase-3 activity. Up-regulation of cathepsin L activity by sense cDNA was associated with reduced apoptosis and later induction of caspase-3 activity. Moreover, down-regulation of cathepsin L lowered the expression of antiapoptotic protein Bcl-2, whereas up-regulation increased the expression of Bcl-2, indicating that cathepsin L acts upstream of caspase-3. These data show that cathepsin L is an important protein mediating the malignancy of gliomas and its inhibition may diminish their invasion and lead to increased tumor cell apoptosis by reducing apoptotic threshold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Turk B, Turk D, Turk V . Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000;1477:98–111.

    Article  CAS  Google Scholar 

  2. Koblinski JE, Sloane BF . Is altered localization of cathepsin B casually related to malignant progression? In: N Katunuma, ed. Medical Aspects of Proteinases and Proteinase Inhibitors, Tokyo, Japan: IOS Press; 1997:185–194.

    Google Scholar 

  3. Demchik LL, Sameni M, Nelson K, et al. Cathepsin B and glioma invasion. Int J Dev Neurosci. 1999;17:483–494.

    Article  CAS  Google Scholar 

  4. Pilkington GJ . Tumour cell migration in the CNS. Brain Pathol. 1994;4:157–166.

    Article  CAS  Google Scholar 

  5. Gladson CL . The extracellular matrix of gliomas: modulation of cell function. J Neuropathol Exp Neurol. 1999;58:1029–1040.

    Article  CAS  Google Scholar 

  6. Schmitt M, Janicke F, Graeff F . Tumour-associated proteases. Fibrinolysis. 1992;6:3–26.

    Article  CAS  Google Scholar 

  7. Levičar N, Strojnik T, Kos J, et al. Lysosomal enzymes, cathepsins in glioma invasion. J Neuro-Oncol. 2002;58:21–32.

    Article  Google Scholar 

  8. Strojnik T, Kos J, Židanik B, et al. Cathepsin B immunohistochemical staining in tumour and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin Cancer Res. 1999;5:559–567.

    CAS  PubMed  Google Scholar 

  9. Sivaparvathi M, Yamamoto M, Nicolson GL, et al. Expression and immunohistochemical localization of cathepsin L during the progression of human gliomas. Clin Exp Metastasis. 1996;14:27–34.

    Article  CAS  Google Scholar 

  10. Lah TT, Strojnik T, Levičar N, et al. Clinical and experimental studies of cysteine cathepsins and their inhibitors in human brain tumors. Int J Biol Markers. 2000;15:90–93.

    Article  CAS  Google Scholar 

  11. Thompson C . Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–1462.

    Article  CAS  Google Scholar 

  12. Jaattela M . Escaping cell death: survival proteins in cancer — review. Exp Cell Res. 1999;248:30–43.

    Article  CAS  Google Scholar 

  13. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–1687.

    Article  CAS  Google Scholar 

  14. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–1326.

    Article  CAS  Google Scholar 

  15. Kroemer G . The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:934

    Article  CAS  Google Scholar 

  16. Zhao M, Eaton JW, Brunk UT . Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2. FEBS Lett. 2000;485:104–108.

    Article  CAS  Google Scholar 

  17. Kidd VJ, Lahti JM, Teitz T . Proteolytic degradation of apoptosis. Semin Cell Dev Biol. 2000;11:191–201.

    Article  CAS  Google Scholar 

  18. Stoka V, Turk B, Schendel SL, et al. Lysosomal protease pathway to apoptosis. J Biol Chem. 2001;276:3149–3157.

    Article  CAS  Google Scholar 

  19. Katunuma N, Matsui A, Le QT, et al. Novel procaspase-3 activating cascade mediated by lysoapoptases and its biological significances in apoptosis. Adv Enzyme Regul. 2001;41:237–250.

    Article  CAS  Google Scholar 

  20. Kin Y, Chintala SK, Go Y, et al. A novel role for urokinase-type plasminogen activator receptor in apoptosis of malignant gliomas. Int J Oncol. 2000;17:61–65.

    CAS  PubMed  Google Scholar 

  21. Castro MG, Rowe J, Morrison E, et al. Calcium-phosphate, DEAE–dextran coprecipitation, and electroporation to transfer genes into neuronal and glial cell lines. In: Lowenstein PR, Enquist LW, eds. Protocols for Gene Transfer in Neuroscience: Towards Gene Therapy of Neurological Disorders. New York: Wiley; 1996:9–23.

    Google Scholar 

  22. Werle B, Staib A, Julke B, et al. Fluorimetric microassays for the determination of cathepsin L and cathepsin S activities. Biol Chem. 1999;380:1109–1116.

    Article  CAS  Google Scholar 

  23. Holst-Hansen C, Johannessen B, Hoyer-Hansen G, et al. Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis. 1996;14:297–307.

    CAS  PubMed  Google Scholar 

  24. Duke RC, Cohen JJ . Morphological and biochemical assays of apoptosis. In: Coligan JE, Kruisbeak AM, eds. Current Protocols in Immunology. New York: Wiley; 1992. 3–17.

    Google Scholar 

  25. Nicolleti I, Migliorati G, Pagliacci MC, et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–279.

    Article  Google Scholar 

  26. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356:768–774.

    Article  CAS  Google Scholar 

  27. Kirschke H, Eerola R, Hopsu-Havu VK, et al. Antisense RNA inhibition of cathepsin L expression reduces tumorigenicity of malignant cells. Eur J Cancer. 2000;36:787–795.

    Article  CAS  Google Scholar 

  28. Chapman HA, Riese JP, Shi GP . Emerging roles for cysteine proteases in human biology. Annu Rev Physiol. 1997;59:63–88.

    Article  CAS  Google Scholar 

  29. Kos J, Lah TT . Cysteine proteinases and their endogenous inhibitors target proteins for prognosis, diagnosis and therapy in cancer (review). Oncol Rep. 1998;5:1349–1361.

    CAS  PubMed  Google Scholar 

  30. Premzl A, Puizdar V, Zavašnik-Bergant V, et al. Invasion of ras-transformed breast epithelial cells depends on the proteolytic activity of cysteine and aspartic proteinases. Biol Chem. 2001;382:853–858.

    Article  CAS  Google Scholar 

  31. Krueger S, Kellner U, Buehling F, et al. Cathepsin L antisense oligonucleotides in a human osteosarcoma cell line: effects on the invasive phenotypes. Cancer Gene Ther. 2001;8:522–528.

    Article  CAS  Google Scholar 

  32. Kondraganti S, Mohanam S, Chintala SK, et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 2000;60:6851–6855.

    CAS  PubMed  Google Scholar 

  33. Rossi M, Rooprai H, Maidment SL, et al. The influence of sequential, in vitro passages on secretion of matrix metalloproteinases by human brain tumour cells. Anticancer Res. 1996;16:121–128.

    CAS  PubMed  Google Scholar 

  34. Gladson CL, Pijuan-Thompson V, Olman MA, et al. Upregulation of urikinase and urokinase receptor genes in malignant astrocytoma. Am J Pathol. 1995;146:1150–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wick W, Wagner S, Kerkau S, et al. Bcl-2 promotes migration and invasiveness of human glioma cells. FEBS Lett. 1998;440:419–424.

    Article  CAS  Google Scholar 

  36. Zhu DM, Uckun FM . Z-Phe-Gly-NHO-Bz, an inhibitor of cysteine cathepsins, induces apoptosis in human cancer cells. Clin Cancer Res. 2000;6:2064–2069.

    CAS  PubMed  Google Scholar 

  37. Tobin DJ, Foitzik K, Reinheckel T, et al. The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am J Pathol. 2002;160:1807–1821.

    Article  CAS  Google Scholar 

  38. Felbor U, Kessler B, Mothes W, et al. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA. 2002;99:7883–7888.

    Article  CAS  Google Scholar 

  39. Harbeck N, Alt U, Berger U, et al. Prognostic impact of proteolytic factors (urokinase-type plasminogen activator, plasminogen activator inhibitor-1, and cathepsins B, D, and L) in primary breast cancer reflects effects of adjuvant systemic therapy. Clin Cancer Res. 2001;7:2757–2764.

    CAS  PubMed  Google Scholar 

  40. Shibata M, Kanamori S, Isahara K, et al. Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun. 1998;251:199–203.

    Article  CAS  Google Scholar 

  41. Isahara K, Ohsawa Y, Kanamori S, et al. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience. 1999;91:233–249.

    Article  CAS  Google Scholar 

  42. Guicciardi ME, Deussing J, Miyoshi H, Kaufmann SH, Gores GJ . Cathepsin B contributes to TNF-α mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000;106:1127–1137.

    Article  CAS  Google Scholar 

  43. Kingham PJ, Pocock JM . Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem. 2001;76:1475–1484.

    Article  CAS  Google Scholar 

  44. Roberts LR, Kurosawa H, Bronk SF, et al. Cathepsin B contributes to bile-salt induced apoptosis of rat hepatocytes. Gastroenterology. 1997;113:1714–1726.

    Article  CAS  Google Scholar 

  45. Van Eijk M, de Groot C . Germinal center B cell apoptosis requires both caspase and cathepsin activity. J Immunol. 1999;163:2478–2482.

    CAS  PubMed  Google Scholar 

  46. Hishita T, Tada-Oikawa S, Tohyama K, et al. Caspase-3 activation by lysosomal enzymes in cytochrome c-independent apoptosis in myelodysplastic syndrome-derived cell line P39. Cancer Res. 2001;61:2878–2884.

    CAS  PubMed  Google Scholar 

  47. Ishisaka R, Utsumi T, Kanno T, et al. Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct. 1999;24:465–479.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Sport of Republic of Slovenia (program no. 0105-509, to TL); the PhD fellowship to N L by the Ministry of Education, Science and Sport; the British Council grant support for Partnerships in Science PSP 6; and the Samantha Dickinson Research Trust (G J P) and the European Union (G J P). We thank Astrid Fitter (Department of Pediatric Hematology and Oncology, Hannover Medical School) for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara T Lah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levičar, N., Dewey, R., Daley, E. et al. Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 10, 141–151 (2003). https://doi.org/10.1038/sj.cgt.7700546

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700546

Keywords

This article is cited by

Search

Quick links