Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated gene transfer of P16INK4/CDKN2 into bax-negative colon cancer cells induces apoptosis and tumor regression in vivo

Abstract

The tumor-suppressor gene p16INK4/CDKN2 (p16) is a cyclin-dependent kinase (cdk) inhibitor and important cell cycle regulator. Here, we show that adenovirus-mediated gene transfer of p16 (AdCMV.p16) into colon cancer cells induces uncoupling of S phase and mitosis and subsequently apoptosis. Flow cytometric analysis revealed that cells infected with AdCMV.p16 showed an initial G2-like arrest followed by S phase without intervening mitosis (DNA >4N). Using microscopic analysis, deformed polyploid cells were detectable only in cells infected with AdCMV.p16 but not in control-infected cells. Subsequently, AdCMV.p16-infected polyploid cells underwent apoptosis, as assessed by AnnexinV staining and DNA fragmentation, suggesting that cell cycle dysregulation is upstream of the onset of apoptosis. Treatment of mice with subcutaneously transplanted tumors of colorectal cancer cells with AdCMV.p16 but not AdCMV.p53 resulted in significantly reduced tumor volume and prolonged survival. Using an orthotopic model of liver metastasis, we observed both reduced local tumor growth and secondary intrahepatic metastasis after AdCMV.p16 treatment. Importantly, induction of apoptosis in vitro and reduction of tumor growth in vivo by p16 was p53- as well as bax-independent because identical results were obtained using cancer cells, either wild type or mutant for p53 or bax. The studies suggest that an AdCMV.p16-based treatment may be especially effective in patients with bax-negative colon cancer where overexpression of p53 appears not to be of therapeutic value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3abcd
Figure 1
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cohen AM, Minsky BD, Schilsky RL . Cancer of the colon In: De Vita VT Jr, Hellman S, Rosenberg SA, eds Cancer: Principles and Practice of Oncology Philadelphia: Lippincott-Raven 1997 1144–1196

    Google Scholar 

  2. Parker SL, Tong T, Bolden S, Wingo PA . Cancer statistics CA Cancer J Clin 1997 47: 5–27

    CAS  PubMed  Google Scholar 

  3. Troisi RJ, Freedman AN, Devesa SS . Incidence of colorectal carcinoma in the U.S.: an update of trends by gender, race, age, subsite, and stage, 1975–1994 Cancer 1999 85: 1670–1676

    CAS  PubMed  Google Scholar 

  4. Steinberg SM, Barkin JS, Kaplan RS, Stablein DM . Prognostic indicators of colon tumors. The gastrointestinal tumor study group experience Cancer 1986 57: 1866–1870

    CAS  PubMed  Google Scholar 

  5. Leichman CG, Flemming T, Muggia FM et al. Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest oncology group study J Clin Oncol 1995 13: 1303–1311

    CAS  PubMed  Google Scholar 

  6. Marsh JC, Bertino JR, Katy KH et al. The influence of drug interval on the effect of methotrexate and fluorouracil in the treatment of advanced colorectal cancer J Clin Oncol 1991 9: 371–380

    CAS  PubMed  Google Scholar 

  7. Shibata D, Peinado MA, Ionov Y, Maklhosyan S, Perucho M . Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation Nat Genet 1994 6: 273–281

    CAS  PubMed  Google Scholar 

  8. Lothe RA . Microsatellite instability in human solid tumors Mol Med Today 1997 2: 61–68

    Google Scholar 

  9. Rampino N, Yamamoto H, Ionov Y et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype Science 1997 275: 976–979

    Google Scholar 

  10. Gessner C, Liebers U, Kuhn H, Stiehl P, Schauer J, Wolff G . BAX and p16INK4A are independent positive prognostic markers for advanced tumor stage of non small cell lung cancer Eur Respir J 2002 19: 134–140

    CAS  PubMed  Google Scholar 

  11. Sturm I, Kohne CH, Wolff G et al. Analysis of the p53/BAX pathway in colorectal cancer: low BAX is a negative prognostic factor in patients with resected liver metastases J Clin Oncol 1999 17: 1364–1374

    CAS  PubMed  Google Scholar 

  12. Clayman GL, El-Naggar AK, Lippman SM et al. Adenovirus mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma J Clin Oncol 1998 16: 2221–2232

    CAS  PubMed  Google Scholar 

  13. Nemunaitis J, Swisher SG, Timmons T et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer J Clin Oncol 2000 18: 609–614

    CAS  PubMed  Google Scholar 

  14. Hayashi S, Emi N, Yokoyama I, Namii Y, Uchida K, Takagi H . Inhibition of establishment of hepatic metastasis in mice by combination gene therapy using both herpes simplex virus-thymidine kinase and granulocyte macrophage-colony stimulating factor genes in murine colon cancer Cancer Gene Ther 1997 4: 339–344

    CAS  PubMed  Google Scholar 

  15. Nielsen CS, Moorman DW, Levy JP, Link CJJ . Herpes simplex thymidine kinase gene transfer is required for complete regression of murine colon adenocarcinoma Am Surg 1997 63: 617–620

    CAS  PubMed  Google Scholar 

  16. Wolff G, Korner IJ, Schumacher A, Arnold W, Dorken B, Mapara MY . Ex vivo breast cancer cell purging by adenovirus-mediated cytosine deaminase gene transfer and short-term incubation with 5-fluorocytosine completely prevents tumor growth after transplantation Hum Gene Ther 1998 10: 2277–2284

    Google Scholar 

  17. Wildner O, Blaese RM, Candotti F . Enzyme prodrug gene therapy: synergistic use of the herpes simplex virus-cellular thymidine kinase/ganciclovir system and thymidylate synthase inhibitors for the treatment of colon cancer Cancer Res 1999 59: 5233–5238

    CAS  PubMed  Google Scholar 

  18. Bash JA . Recombinant vaccinia interleukin-2–infected tumor cell vaccines in immunotherapy of murine colon adenocarcinoma J Immunother 1993 14: 169–272

    Google Scholar 

  19. McLaughlin JP, Schlom J, Kantor JA, Greiner JW . Improved immunotherapy of a recombinant carcinoembryonic antigen vaccinia vaccine when given in combination with interleukin-2 Cancer Res 1996 56: 2361–2367

    CAS  PubMed  Google Scholar 

  20. Mazzalini G, Qian C, Xie X et al. Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12 Cancer Gene Ther 1999 6: 514–522

    Google Scholar 

  21. Kaufman H, Schlom J, Kantor J . A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA) Int J Cancer 1991 48: 900

    CAS  PubMed  Google Scholar 

  22. Hamilton JM, Chen AP, Nguyen B . Phase I study of recombinant vaccinia virus that expresses human carcinoembryonic antigen in adult patients with adenocarcinoma Proc Am Soc Clin Oncol 1994 13: 295

    Google Scholar 

  23. Marshall JL, Hawkins MJ, Tsang KY et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen J Clin Oncol 1999 17: 332–337

    CAS  PubMed  Google Scholar 

  24. Kass E, Schlom J, Thompson J, Guadagni F, Graziano P, Greiner JW . Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus Cancer Res 1999 59: 676–683

    CAS  PubMed  Google Scholar 

  25. Chen L, McGowan P, Ashe S et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity J Exp Med 1994 179: 523–532

    CAS  PubMed  Google Scholar 

  26. Carroll MW, Overwijk WW, Surman DR, Tsung K, Moss B, Restifo NP . Construction and characterization of a triple-recombinant vaccinia virus encoding B7-1, interleukin 12, anda model tumor antigen J Natl Cancer Inst 1998 90: 1881–1887

    CAS  PubMed  Google Scholar 

  27. Fujiwara T, Grimm EA, Roth JA . Gene therapeutics and gene therapy Curr Opin Oncol 1994 6: 96–105

    CAS  PubMed  Google Scholar 

  28. Sherr CJ . The Pezcoller lecture: cancer cell cycle revisited Cancer Res 2000 60: 3689–3695

    CAS  PubMed  Google Scholar 

  29. Craig C, Kim M, Ohri E et al. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells Oncogene 1998 16: 265–272

    CAS  PubMed  Google Scholar 

  30. Lukas J, Sorensen CS, Lukas C, Santoni-Rugiu E, Bartek J . p16INK4A, but not constitutively active pRb, can impose a sustained G1 arrest: molecular mechanisms and implications for oncogenesis Oncogene 1999 18: 3930–3935

    CAS  PubMed  Google Scholar 

  31. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression Genes Dev 1999 1: 1501–1512

    Google Scholar 

  32. Sandig V, Brand K, Herwig S, Lukas J, Bartek J, Strauss M . Adenovirally transferred p16INK4A/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death Nat Med 1997 3: 313–319

    CAS  PubMed  Google Scholar 

  33. Kim M, Katayose Y, Rojanala L et al. Induction of apoptosis in p16INK4A mutant cell lines by adenovirus-mediated overexpression of p16INK4A protein Cell Death Differ 2000 7: 706–711

    CAS  PubMed  Google Scholar 

  34. Jin X, Nguyen D, Zhang WW, Kyritsis A, Roth JA . Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector Cancer Res 1995 55: 3250–3253

    CAS  PubMed  Google Scholar 

  35. Sharpless NE, Bardeesy N, Lee KH et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis Nature 2001 413: 86–91

    CAS  PubMed  Google Scholar 

  36. Fu XY, Zhang SW, Ran RQ, Shen ZH, Gu JX, Cao SL . Restoration of the p16 gene is related to increased radiosensitivity of p16-deficient lung adenocarcinoma cell lines J Cancer Res Clin Oncol 1998 124: 621–626

    CAS  PubMed  Google Scholar 

  37. Schreiber M, Muller WJ, Singh G, Graham FL . Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21 (WAF/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity Oncogene 1999 18: 1663–1676

    CAS  PubMed  Google Scholar 

  38. Chintala SK, Fuezo J, Gomey-Manyano C et al. Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro Oncogene 1997 15: 2049–2057

    CAS  PubMed  Google Scholar 

  39. Jen J, Harper J, Bigner S et al. Deletion of p16 and p15 genes in brain tumors Cancer Res 1994 54: 6353–6358

    CAS  PubMed  Google Scholar 

  40. Spruck CI, Gonzalez-Zulueta M, Shibata A et al. p16 gene in uncultured tumours Nature 1994 370: 183–184

    PubMed  Google Scholar 

  41. Sherr C, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases Genes Dev 1995 9: 1149–1163

    CAS  PubMed  Google Scholar 

  42. Reed AL, Califano J, Cairns P et al. High frequency of (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma Cancer Res 1996 56: 3630–3633

    CAS  PubMed  Google Scholar 

  43. Sellers WR, Kaelin WG . Role of the retinoblastoma protein in the pathogenesis of human cancer J Clin Oncol 1997 15: 3301–3312

    CAS  PubMed  Google Scholar 

  44. Merlo A, Herman J, Mao L et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/Mts1 in human cancers Nat Med 1995 1: 686–692

    CAS  PubMed  Google Scholar 

  45. Gonzalez-Zulueta M, Bender CM, Yang AS et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing Cancer Res 1995 55: 4531–5435

    CAS  PubMed  Google Scholar 

  46. Geradts J, Wilson PA . High frequency of aberrant p16(INK4A) expression in human breast cancer Am J Pathol 1996 149: 15–20

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pocard M, Chevillard S, Villaudy J, Poupon MF, Dutrillaux B, Remvikos Y . Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked atthe G1/S boundary after irradiation Oncogene 1996 12: 875–882

    CAS  PubMed  Google Scholar 

  48. Te Poele RH, Joel SP . Schedule-dependent cytotoxicity of SN-38 in p53 wild-type and mutant colon adenocarcinoma cell lines Br J Cancer 1999 81: 1285–1293

    CAS  PubMed  Google Scholar 

  49. Tominaga O, Nita ME, Nagawa H, Fujii S, Tsuruo T, Muto T . Expressions of cell cycle regulators in human colorectal cancer cell lines Jpn J Cancer Res 1997 88: 855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nüssler AK, Di SM, Billiar TR et al. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin J Exp Med 1992 176: 261–264

    PubMed  Google Scholar 

  51. Dorko K, Freeswick PD, Bartoli F et al. A new technique for isolating and culturing human hepatocytes from whole or split livers not used for transplantation Cell Transplant 1994 3: 387–395

    CAS  PubMed  Google Scholar 

  52. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA . High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus Cancer Gene Ther 1994 1: 5–13

    PubMed  Google Scholar 

  53. Wolff G, Mastrangeli A, Heinflink M, Falck-Pedersen E, Gershengorn MC, Crystal RG . Ectopic expression of thyrotropin releasing hormone (TRH) receptors in liver modulates organ function to regulate blood glucose by TRH Nat Genet 1996 12: 274–279

    CAS  PubMed  Google Scholar 

  54. Kay MA, Holterman AX, Meuse L et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig admission Nat Genet 1995 11: 191–197

    CAS  PubMed  Google Scholar 

  55. Rosenfeld MA, Siegfried W, Yoshimura K et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo Science 1991 252: 431–434

    CAS  PubMed  Google Scholar 

  56. Rosenfeld MA, Yoshimura K, Trapnell BC et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium Cell 1992 68: 431–434

    Google Scholar 

  57. Karawajew L, Ruppert V, Wuchter C et al. Inhibition of in vitro spontaneous apoptosis by IL-7 correlates with upregulation of Bcl-2, cortical/mature immunophenotype, and better cytoreduction in childhood T-ALL Blood 2000 96: 297–306

    CAS  PubMed  Google Scholar 

  58. Karawajew L, Glibin E, Maleev V et al. Role of crown-likeside chains in the biological activity of substituted-phenoxazone drugs Anticancer Drug Des 2000 15: 331–338

    CAS  PubMed  Google Scholar 

  59. Wersto RP, Rosenthal ER, Seth PK, Eissa NT, Donahue RE . Recombinant replication-defective adenovirus gene transfer vectors induce cell cycle dysregulation and inappropriate expression of cyclin proteins J Virol 1998 72: 9491–9502

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brand K, Wolff G, Strauss M . Gene therapy for cancer Gene Therapy: Therapeutic Mechanisms and Strategies New York: Marcel Dekker 2000 439–472

    Google Scholar 

  61. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Cell 1995 80: 293–299

    CAS  PubMed  Google Scholar 

  62. Arafat WO, Gomez-Navarro J, Xiang J et al. An adenovirus encoding proapoptotic bax induces apoptosis and enhances the radiation effect in human ovarian cancer Mol Ther 2000 6: 545–554

    Google Scholar 

  63. Pietersen AM, v.d. Eb MM, Rademaker HJ et al. Specific tumor-cell killing with adenovirus vectors containing the apoptin gene Gene Ther 1999 6: 882–892

    CAS  PubMed  Google Scholar 

  64. Shinoura N, Yamamoto N, Yoshida Y, Asai A, Kirino T, Hamada H . Adenovirus-mediated transfer of caspase-8 in combination with superrepressor of NF-kappaB drastically induced apoptosis in gliomas Biochem Biophys Res Commun 2000 271: 544–552

    CAS  PubMed  Google Scholar 

  65. Shinoura N, Muramatsu Y, Yoshida Y, Asai A, Kirino T, Hamada H . Adenovirus-mediated transfer of caspase-3 with Fas ligand induces drastic apoptosis in U-373MG glioma cells Exp Cell Res 2000 256: 423–433

    CAS  PubMed  Google Scholar 

  66. Schwartz SJ, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M . Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype Cancer Res 1999 59: 2995–3002

    CAS  PubMed  Google Scholar 

  67. Craig C, Wersto R, Kim M et al. A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells Oncogene 1997 14: 2283–2289

    CAS  PubMed  Google Scholar 

  68. Rocco JW, Li D, Liggett WH et al. p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer Clin Cancer Res 1998 4: 1697–1704

    CAS  PubMed  Google Scholar 

  69. Fueyo J, Gomez-Manzano C, Yung WK et al. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo Nat Med 1998 4: 685–690

    CAS  PubMed  Google Scholar 

  70. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ . Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6 Mol Cell Biol 1995 15: 2672–2681

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang XQ, Gabrielli BG, Milligan A, Dickinson JL, Antalis TM, Ellem KAO . Accumulation of p16CDKN2A in response to ultraviolet irradiation correlates with a late SG2 phase cell cycle delay Cancer Res 1996 56: 2510–2514

    CAS  PubMed  Google Scholar 

  72. Brand K, Loser P, Arnold W, Bartels T, Strauss M . Tumor cell–specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach Gene Ther 1998 5: 1363–1371

    CAS  PubMed  Google Scholar 

  73. Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ . p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells Oncogene 1997 14: 929–935

    CAS  PubMed  Google Scholar 

  74. Lu Y, Yamagishi N, Yagi I, Takebe H . Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells Oncogene 1998 16: 705–712

    CAS  PubMed  Google Scholar 

  75. Harper JW, Elledge SJ . Cdk inhibitors in development and cancer Curr Opin Genet Dev 1996 6: 56–64

    CAS  PubMed  Google Scholar 

  76. Deng C, Zhang P, Harper W, Elledge SJ, Leder P . Mice lackingp21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control Cell 1995 82: 675–684

    CAS  PubMed  Google Scholar 

  77. Sherr CJ . Cancer cell cycles Science 1996 47: 1672–1677

    Google Scholar 

  78. Saltz LB, Kelsen DP . Adjuvant treatment of colorectal cancer Annu Rev Med 1997 48: 191–202

    CAS  PubMed  Google Scholar 

  79. Reed JC . Survivin' cell-separation anxiety Nat Cell Biol 1999 1: 199–200

    Google Scholar 

  80. Ambrosini G, Adida C, Altieri DC . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma Nat Med 1997 3: 917–921

    CAS  PubMed  Google Scholar 

  81. Tamm I, Wang Y, Sausville E et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs Cancer Res 1998 58: 5315–5320

    CAS  PubMed  Google Scholar 

  82. Suzuki A, Hayashida M, Ito T et al. Survivin initiates cell cycle entry by the competitive interaction with Cdk-4/p16INK4a and Cdk2/Cyclin E complex activation Oncogene 2000 19: 3225–3234

    CAS  PubMed  Google Scholar 

  83. Patel SD, Tran AC, Ge Y et al. The p53-independent tumoricidal activity of an adenoviral vector encoding a p27–p16 fusion tumor suppressor gene Mol Ther 2000 2: 161–169

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Mark Kay (Stanford University, Stanford, CA) Dr Ronald Crystal (Cornell University, New York, NY), and Dr Michael Strauss (Max Delbrück Center for Molecular Medicine, Berlin, Germany, deceased) for generously providing the adenoviral vectors. Furthermore, we thank B Durieux, M Gries, K Jäger, and P Pierschalek for expert technical assistance and M Dittmar for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Tamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamm, I., Schumacher, A., Karawajew, L. et al. Adenovirus-mediated gene transfer of P16INK4/CDKN2 into bax-negative colon cancer cells induces apoptosis and tumor regression in vivo. Cancer Gene Ther 9, 641–650 (2002). https://doi.org/10.1038/sj.cgt.7700480

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700480

Keywords

This article is cited by

Search

Quick links