Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma

Abstract

Among various immunotherapeutic approaches, interleukin-12 (IL-12) is particularly appealing because of its superior antitumor effects, which have been demonstrated in preclinical as well as clinical studies. However, IL-12 therapy was often accompanied by severe side effects due mainly to the supranormal induction of interferon-γ. To optimize the therapeutic efficacy and lower the side effects of IL-12, we have investigated the antitumor activity of combined IL-12 and granulocyte–macrophage colony-stimulating factor (GM-CSF) gene therapy in a highly malignant and poorly immunogenic murine hepatocellular carcinoma model. Using a versatile hydrodynamics-based DNA delivery method, we showed that the combined gene delivery of IL-12 and GM-CSF induced very strong antitumor cellular immunity and achieved significant therapeutic efficacy, whereas each cytokine gene alone yielded appreciable but less effects. We also observed that the combined therapy induced lower levels of interferon-γ than did IL-12 alone. These results suggest that combined IL-12 and GM-CSF therapy can render a stronger antitumor effect as well as lowering potential side effects. Cancer Gene Therapy (2001) 8, 751–758

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brunda MJ, et al . Antitumor activity of interleukin 12 in preclinical models Cancer Chemother Pharmacol 1996 38: S16–S21

    Article  CAS  PubMed  Google Scholar 

  2. Rodolfo M, Colombo MP . Interleukin-12 as an adjuvant for cancer immunotherapy Methods 1999 19: 114–120

    Article  CAS  PubMed  Google Scholar 

  3. Trinchieri G, Scott P . Interleukin-12: basic principles and clinical applications Curr Top Microbiol Immunol 1999 238: 57–78

    CAS  PubMed  Google Scholar 

  4. Hendrzak JA, Brunda MJ . Antitumor and antimetastatic activity of interleukin-12 Curr Top Microbiol Immunol 1996 213: 65–83

    CAS  PubMed  Google Scholar 

  5. Golab J, Zagozdzon R . Antitumor effects of interleukin-12 in pre-clinical and early clinical studies (Review) Int J Mol Med 1999 3: 537–544

    CAS  PubMed  Google Scholar 

  6. Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA . IL-12 induces T helper 1–directed antitumor response J Immunol 1997 158: 3359–3365

    CAS  PubMed  Google Scholar 

  7. Puddu P, et al . IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages J Immunol 1997 159: 3490–3497

    CAS  PubMed  Google Scholar 

  8. Chan SH, Kobayashi M, Santoli D, Perussia B, Trinchieri G . Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2 J Immunol 1992 148: 92–98

    CAS  PubMed  Google Scholar 

  9. Chehimi J, et al . Natural killer (NK) cell stimulatory factor increases the cytotoxic activity of NK cells from both healthy donors and human immunodeficiency virus–infected patients J Exp Med 1992 175: 789–796

    Article  CAS  PubMed  Google Scholar 

  10. Brunda MJ, et al . Antitumor and antimetastatic activity of interleukin 12 against murine tumors J Exp Med 1993 178: 1223–1230

    Article  CAS  PubMed  Google Scholar 

  11. Cohen J . IL-12 deaths: explanation and a puzzle Science 1995 270: 908

    Article  CAS  PubMed  Google Scholar 

  12. Car BD, et al . Role of interferon-gamma in interleukin 12–induced pathology in mice Am J Pathol 1995 147: 1693–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Car BD, Eng VM, Lipman JM, Anderson TD . The toxicology of interleukin-12: a review Toxicol Pathol 1999 27: 58–63

    Article  CAS  PubMed  Google Scholar 

  14. Boyer MW, et al . Cytokine upregulation of the antigen-presenting function of acute myeloid leukemia cells Leukemia 2000 14: 412–418

    Article  CAS  PubMed  Google Scholar 

  15. Jager E, et al . Granulocyte–macrophage colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo Int J Cancer 1996 67: 54–62

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, et al . Transgenic expression of granulocyte–macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung Blood 2000 95: 2337–2345

    CAS  PubMed  Google Scholar 

  17. Williams MA, Kelsey SM, Newland AC . GM-CSF and stimulation of monocyte/macrophage function in vivo relevance and in vitro observations Eur J Cancer 1999 35: S18–S22

    Article  CAS  PubMed  Google Scholar 

  18. Kayaga J, et al . Anti-tumour activity against B16-F10 melanoma with a GM-CSF secreting allogeneic tumour cell vaccine Gene Ther 1999 6: 1475–1481

    Article  CAS  PubMed  Google Scholar 

  19. Mellstedt H, Fagerberg J, Osterborg A . Local low-dose of soluble GM-CSF significantly augments an immune response against tumour antigens in man Eur J Cancer 1999 35: S29–S32

    Article  CAS  PubMed  Google Scholar 

  20. Roth MD, et al . Granulocyte–macrophage colony-stimulating factor and interleukin 4 enhance the number and antigen-presenting activity of circulating CD14+ and CD83+ cells in cancer patients Cancer Res 2000 60: 1934–1941

    CAS  PubMed  Google Scholar 

  21. Tatsumi T, et al . B7-1 (CD80) gene transfer combined with interleukin-12 administration elicits protective and therapeutic immunity against mouse hepatocellular carcinoma Hepatology 1999 30: 422–429

    Article  CAS  PubMed  Google Scholar 

  22. Drozdzik M, et al . Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma J Hepatol 2000 32: 279–286

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Qian C, Peng D, Prieto J . Gene transfer to liver cancer cells of B7-1 plus interleukin 12 changes immunoeffector mechanisms and suppresses helper T cell type 1 cytokine production induced by interleukin 12 alone Hum Gene Ther 2000 11: 127–138

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA Gene Ther 1999 6: 1258–1266

    Article  CAS  PubMed  Google Scholar 

  25. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA Hum Gene Ther 1999 10: 1735–1737

    Article  CAS  PubMed  Google Scholar 

  26. Li J, et al . rAAV vector–mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy Gene Ther 1999 6: 74–82

    Article  CAS  PubMed  Google Scholar 

  27. Zhang G, Song YK, Liu D . Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure Gene Ther 2000 7: 1344–1349

    Article  CAS  PubMed  Google Scholar 

  28. Pham-Nguyen KB, et al . Role of NK and T cells in IL-12–induced anti-tumor response against hepatic colon carcinoma Int J Cancer 1999 81: 813–819

    Article  CAS  PubMed  Google Scholar 

  29. Fuji N, et al . Augmentation of local antitumor immunity in the liver by tumor vaccine modified to secrete murine interleukin 12 Gene Ther 1999 6: 1120–1127

    Article  CAS  PubMed  Google Scholar 

  30. Kurzawa H, et al . Recombinant interleukin 12 enhances cellular immune responses to vaccination only after a period of suppression Cancer Res 1998 58: 491–499

    CAS  PubMed  Google Scholar 

  31. Fernandez NC, Levraud JP, Haddada H, Perricaudet M, Kourilsky P . High frequency of specific CD8+ T cells in the tumor and blood is associated with efficient local IL-12 gene therapy of cancer J Immunol 1999 162: 609–617

    CAS  PubMed  Google Scholar 

  32. Caruso M, et al . Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma Proc Natl Acad Sci USA 1996 93: 11302–11306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Z, et al . Hyperexpression of CD40 ligand (CD154) in inflammatory bowel disease and its contribution to pathogenic cytokine production J Immunol 1999 163: 4049–4057

    CAS  PubMed  Google Scholar 

  34. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Ther 2000 7: 24–30

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, Li J, Xiao X . From the cover: adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model Proc Natl Acad Sci USA 2000 97: 13714–13719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Y. Xiao for critical reading and editing of English. This work is supported, in part, by a grant from the State Key Basic Research Program in China (G1998051211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Qiu, SJ., Ye, SL. et al. Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma. Cancer Gene Ther 8, 751–758 (2001). https://doi.org/10.1038/sj.cgt.7700375

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700375

Keywords

This article is cited by

Search

Quick links