Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU

Abstract

Due to minimal treatment success with surgery, radiotherapy, and chemotherapy, the aim of this study was to test the therapeutic potential of gene therapy for the treatment of glioblastoma multiforme (GBM). We have quantitatively analyzed two gene therapy approaches using short-term human glioma cell cultures derived from surgical biopsies (designated IN859, IN1612, IN2045, IN1760, and IN1265) and compared the results of gene therapy with the chemosensitivity of the same cells. All of the glioma cell cultures tested were susceptible to recombinant adenovirus (RAd)-mediated infection. Expression of herpes simplex virus type 1-thymidine kinase (RAd128), followed by ganciclovir treatment, induced apoptosis in all of the glioma cell cultures studied, including three that are resistant to the chemotherapeutic drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). Expression of murine Fas ligand (RAdhCMV-mFasL) also induced cell death in four of the five cell cultures studied. One cell culture that was resistant to CCNU was also resistant to apoptosis induced by mFasL expression. These results suggest that sensitivity to chemotherapeutic agents does not necessarily correlate with the sensitivity to gene therapy treatments. RAds expressing therapeutic gene products in human glioma cell cultures are able to induce apoptosis even in some cells that are resistant to a commonly used chemotherapeutic agent. Therefore, RAd-mediated gene transfer could be a good candidate to further develop gene therapy for the treatment of GBM. Cancer Gene Therapy (2001) 8, 589–598

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kleihues P, Burger PC, Scheithauer BW . The new WHO classification of brain tumors Brain Pathol 1993 3: 255–268

    CAS  PubMed  Google Scholar 

  2. Holland EC . Glioblastoma multiforme: the terminator Proc Natl Acad Sci USA 2000 97: 6242–6244

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eck SL, Alavi JB, Alavi A, et al . Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial Hum Gene Ther 1996 7: 1465–1482

    CAS  PubMed  Google Scholar 

  4. Bradford R, Koppel H, Pilkington GJ, et al . Heterogeneity of chemosensitivity in six clonal cell lines derived from a spontaneous murine astrocytoma and its relationship to genotypic and phenotypic characteristics J Neuro-Oncol 1997 34: 247–261

    CAS  Google Scholar 

  5. Klatzmann D, Valery CA, Bensimon G, et al . A phase I/II study of herpes simplex type 1 thymidine kinase ‘suicide’ gene therapy for recurrent glioblastoma Hum Gene Ther 1998 9: 2595–2604

    CAS  PubMed  Google Scholar 

  6. Palu G, Cavaggioni A, Calvi P, et al . Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans Gene Ther 1999 6: 330–337

    CAS  PubMed  Google Scholar 

  7. Shand N, Weber F, Mariani L, et al . A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir Hum Gene Ther 1999 10: 2325–2335

    CAS  PubMed  Google Scholar 

  8. Trask TW, Trask RP, Aguilar-Cordova E, et al . Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with recurrent malignant brain tumors Mol Ther 2000 1: 195–203

    CAS  PubMed  Google Scholar 

  9. Market JM, Medlock MD, Rabkin SD, et al . Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial Gene Ther 2000 7: 867–874

    Google Scholar 

  10. Rampling R, Cruickshank G, Papanastassiou V, et al . Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma Gene Ther 2000 7: 859–866

    CAS  PubMed  Google Scholar 

  11. Sandmair A-M, Loimas S, Puranen P, et al . Thymidine kinase gene therapy for human malignant glioma using replication-deficient retroviruses or adenoviruses Hum Gene Ther 2000 11: 2197–2206

    CAS  PubMed  Google Scholar 

  12. Castro MG, Cowen R, Smith-Arica J, et al . Gene therapy strategies for intracranial tumours: glioma and pituitary adenomas Histol Histopathol 2000 15: 1233–1252

    CAS  PubMed  Google Scholar 

  13. Chen S-H, Shine HD, Goodman J, et al . Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo Proc Natl Acad Sci USA 1994 91: 3054–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Maron A, Gustin T, Le Roux A, et al . Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene: long-term follow-up by magnetic resonance imaging Gene Ther 1996 3: 315–322

    CAS  PubMed  Google Scholar 

  15. Dewey RA, Morrissey G, Cowsill CM, et al . Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials Nat Med 1999 5: 1256–1263

    CAS  PubMed  Google Scholar 

  16. Sturtz FG, Waddell K, Shulok J, et al . Variable efficiency of the thymidine kinase/ganciclovir system in human glioblastoma cell lines: implications for gene therapy Hum Gene Ther 1997 8: 1945–1953

    CAS  PubMed  Google Scholar 

  17. Vandier D, Rixe O, Brenner M, et al . Selective killing of glioma cell lines using an astrocyte-specific expression of the herpes simplex virus-thymidine kinase gene Cancer Res 1998 58: 4577–4580

    CAS  PubMed  Google Scholar 

  18. Shinoura N, Yoshida Y, Sadata A, et al . Apoptosis by retrovirus- and adenovirus-mediated gene transfer of fas ligand to glioma cells: implications for gene therapy Hum Gene Ther 1998 9: 1983–1993

    CAS  PubMed  Google Scholar 

  19. Ambar BB, Frei K, Malipiero U, et al . Treatment of experimental glioma by administration of adenoviral vectors expressing fas ligand Hum Gene Ther 1999 10: 1641–1648

    CAS  PubMed  Google Scholar 

  20. Shinoura N, Yoshida Y, Asai A, et al . Adenovirus-mediated transfer of p53 and fas ligand drastically enhances apoptosis in gliomas Cancer Gene Ther 2000 7: 732–738

    CAS  PubMed  Google Scholar 

  21. Darling JL . The in vitro biology of human brain tumours In: Thomas DGT, ed. Neuro-Oncology: Primary Malignant Brain Tumours London: Edward Arnold 1990 1–25

  22. Darling JL . Brain In: Masters JRW, ed. Human Cancer in Primary Culture: A Handbook Dordrecht: Kluwer 1991 231–251

  23. Darling JL, Lewandowicz GM, Thomas DGT . Chemosensitivity testing human malignant brain tumors In: Kornblith PL, Walker MD, eds. Advances in Neuro-Oncology II Armonk, NY: Futura Publishing Company 1997 413–434

  24. Wilkinson GWG, Akrigg A . The cytomegalovirus major immediate early promoter and its use in eukaryotic expression systems In: Greenaway PJ, ed. Advances in Gene Technology Vol. 2: London: JAI Press 1991 287–310

  25. Shering AF, Bain D, Stewart K, et al . Cell-type specific expression in brain cell cultures from a short human cytomegalovirus major immediate early promoter depends on whether it is inserted into herpesvirus or adenovirus vectors J Gen Virol 1997 78: 445–459

    CAS  PubMed  Google Scholar 

  26. Cowsill C, Southgate TD, Morrissey G, et al . Central nervous system toxicity of two adenoviral vectors encoding variants of the herpes simplex virus type 1 thymidine kinase: reduced cytotoxicity of a truncated HSV1-TK Gene Ther 2000 7: 679–685

    CAS  PubMed  Google Scholar 

  27. Larregina AT, Morelli AE, Dewey RA, et al . FasL induces fas/apo1-mediated apoptosis in human embryonic kidney 293 cells routinely used to generate E1-deleted adenoviral vectors Gene Ther 1998 5: 563–568

    CAS  PubMed  Google Scholar 

  28. Morelli AE, Larregina AT, Smith-Arica J, et al . Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity J Gen Virol 1999 80: 571–583

    CAS  PubMed  Google Scholar 

  29. Lowenstein PR, Shering AF, Bain D, et al . The use of adenovirus vectors to transfer genes to identified target brain cells in vitro In: Lowenstein PR, Enquist LW, eds. Protocols for Gene Transfer in Neuroscience: Towards Gene Therapy of Neurological Disorders Chichester, UK: John Wiley and Sons, Ltd 1996 93–114

  30. Southgate TD, Kingston PA, Castro MG . Gene transfer into neural cells in vitro using adenoviral vectors In: Crawley J, Rogawski M, Sibley D, Wray S, Skolnick P, eds. Current Protocols in Neuroscience, Vol. 4: Gene Cloning, Expression, and Mutagenesis New York, NY: John Wiley and Sons Inc 2000 4.23.1–4.23.40

  31. Dion LD, Fang J, Garver RI Jr . Supernatant rescue assay vs. polymerase chain reaction for detection of wild type adenovirus-contaminating recombinant adenovirus stocks J Virol Methods 1996 56: 99–107

    CAS  PubMed  Google Scholar 

  32. Rubinchik S, Ding R, Qiu AJ, et al . Adenoviral vector which delivers fasL-GFP fusion protein regulated by the tet-inducible expression system Gene Ther 2000 7: 875–885

    CAS  PubMed  Google Scholar 

  33. Southgate TD, Windeatt S, Smith-Arica J, et al . Transcriptional targeting to anterior pituitary lactotrophic cells using recombinant adenovirus vector in vitro and in vivo in normal and estrogen/sulpiride-induced hyperplasic anterior pituitaries Endocrinology 2000 141: 1–13

    Google Scholar 

  34. Macgregor GR, Nolan GP, Fiering S, et al . Use of E. coli lacZ (β-galactosidase) as a reporter gene In: Murray EJ, ed. Methods in Molecular Biology, Vol. 7: Gene Transfer and Expression Protocols Clifton, NJ: The Humana Press Inc 1991 217–235

  35. Windeatt S, Southgate TD, Dewey RA, et al . Adenovirus-mediated herpes simplex virus type-1 thymidine kinase gene therapy suppresses oestrogen-induced pituitary prolactinomas J Clin Endocrinol Metab 2000 85: 1296–1305

    CAS  PubMed  Google Scholar 

  36. Fraker PJ, King LE, Lill-Elghanian D, et al . Quantification of apoptotic events in pure and heterogeneous populations of cells using the flow cytometer Methods Cell Biol 1995 46: 57–76

    CAS  PubMed  Google Scholar 

  37. Haselsberger K, Peterson DC, Thomas DGT, et al . Assay of anticancer drugs in tissue culture: comparison of a tetrazolium-based assay and a protein binding dye assay in short-term cultures derived from human malignant glioma Anti-Cancer Drugs 1996 7: 331–338

    CAS  PubMed  Google Scholar 

  38. El-Deredy W, Ashmore SM, Branston NM, et al . Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks Cancer Res 1997 57: 4196–4199

    CAS  PubMed  Google Scholar 

  39. Levin VA . Clinical pharmacology of the nitrosoureas In: Prestayko AW, Crooke ST, Baker LH, Carter SK, Schein PS, eds. Nitrosoureas New York, NY: Academic Press 1981 171–180

  40. Elshami AA, Saavedra A, Zhang H, et al . Gap junctions play a role in the bystander effect of the herpesvirus thymidine kinase ganciclovir system in vitro Gene Ther 1996 3: 85–92

    CAS  PubMed  Google Scholar 

  41. Freeman SM, Abboud CN, Whartenby KA, et al . The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  42. Salomon B, Maury S, Loubiere L, et al . A truncated herpes simplex virus thymidine kinase phosphorylates thymidine and nucleoside analogs and does not cause sterility in transgenic mice Mol Cell Biol 1995 15: 5322–5328

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagata S . Apoptosis by death factor Cell 1997 88: 355–365

    CAS  PubMed  Google Scholar 

  44. Shinohara H, Yagita H, Ikawa Y, et al . Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation Cancer Res 2000 60: 1766–1772

    CAS  PubMed  Google Scholar 

  45. O'Connell J, O'Sullivan GC, Collins JK, et al . The Fas counter-attack: Fas mediated T cell killing by colon cancer cells expressing Fas ligand J Exp Med 1996 184: 1075–1082

    CAS  PubMed  Google Scholar 

  46. Hahne M, Rimoldi D, Schroter M, et al . Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape Science 1996 274: 1363–1366

    CAS  PubMed  Google Scholar 

  47. Gerdes CA, Castro MG, Lowenstein PR . Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo Mol Ther 2000 2: 330–338

    CAS  PubMed  Google Scholar 

  48. Smith-Arica JR, Morelli AE, Larregina AT, et al . Cell-type specific and regulatable transgenesis in the adult brain: adenovirus-encoded combined transcriptional targeting and inducible transgene expression Mol Ther 2000 2: 579–587

    CAS  PubMed  Google Scholar 

  49. Thomas CE, Schiedner G, Kochanek S, et al . Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals infected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases Proc Natl Acad Sci USA 2000 97: 7482–7487

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Khuri FR, Nemunaitis J, Ganly I, et al . A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer Nat Med 2000 6: 879–885

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Emma Jones and Clare Thomas for preparations of RAd35, M. Janicot (Rhone-Poulenc-Rorer, France) for the TK antibody, and A. Tasinato (University Hospital, Zurich, Switzerland) for the human glioma cell line LN18. We also acknowledge Ros Poulton for expert secretarial assistance.

This work was supported by the Biotechnology and Biological Sciences Research Council (UK), The Cancer Research Campaign (UK), and The Royal Society through grants to M. G. C. and P. R. L. P. R. L. is a fellow of The Lister Institute of Preventive Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleniak, T., Darling, J., Lowenstein, P. et al. Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU. Cancer Gene Ther 8, 589–598 (2001). https://doi.org/10.1038/sj.cgt.7700348

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700348

Keywords

This article is cited by

Search

Quick links