Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced growth suppression in esophageal carcinoma cells using adenovirus-mediated fusion gene transfer (uracil phosphoribosyl transferase and herpes simplex virus thymidine kinase)

Abstract

Advanced esophageal cancers are highly malignant and frequently resistant to 5-fluorouracil (5-FU). Escherichia coli uracil phosphoribosyltransferase (UP) is a pyrimidine salvage enzyme that alters 5-FU metabolism and sensitivity. A recombinant adenovirus encoding the UP gene (AxCA.UP) has been applied in gastric cancer gene therapy to sensitize cancer cells to lower concentrations of 5-FU. We have generated a recombinant adenovirus (AxCA.UT) encoding UP and herpes simplex virus thymidine kinase fusion protein (UT) to examine whether it would enhance the antitumor activity of AxCA.UP treatment. AxCA.UT treatment significantly enhanced the sensitivity of human esophageal cancer cells to and significantly enhanced the growth inhibition effects of UP gene therapy in vitro. Moreover, both 5-FU and ganciclovir showed bystander effects on growth inhibition. In an in vivo study, the therapeutic outcome of AxCA.UT treatment significantly enhanced the antitumor activity of AxCA.UP treatment. These observations suggest that AxCA.UT may be useful in esophageal cancer gene therapy. Cancer Gene Therapy (2001) 8, 512–521

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kanai F, Kawakami T, Hamada H, et al . Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil Cancer Res 1998 58: 1946–1951

    CAS  PubMed  Google Scholar 

  2. Mirra AP, Justo FA, Miziara JE, Schneider CA, Trippe N . Historical evolution of the treatment of esophageal cancer at the Hospital. A.C. Camargo, Sao Paulo, Brazil Rev Assoc Med Bras 1995 41: 277–283

    CAS  PubMed  Google Scholar 

  3. Ancona E, Ruol A, Castoro C, et al . First-line chemotherapy improves the resection rate and long-term survival of locally advanced (T4, any N, M0) squamous cell carcinoma of the thoracic esophagus: final report on 163 consecutive patients with 5-year follow-up Ann Surg 1997 226: 714–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Houghton JA, Weiss KD, Williams LG, Torrance PM, Houghton PJ . Relationship between 5-fluoro-2′-deoxyuridylate, 2′-deoxyuridylate, and thymidylate synthase activity subsequent to 5-fluorouracil administration, in xenografts of human colon adenocarcinomas Biochem Pharmacol 1986 35: 1351–1358

    Article  CAS  PubMed  Google Scholar 

  5. Aschele C, Sobrero A, Faderan MA, Bertino JR . Novel mechanisms of resistance to 5-fluorouracil in human colon cancer (HCT-8) subline following exposure to two different clinically relevant dose schedules Cancer Res 1992 52: 1855–1864

    CAS  PubMed  Google Scholar 

  6. Parker WB, Cheng YC . Metabolism and mechanism of action of 5-fluorouracil Pharmacol Ther 1990 48: 381–395

    Article  CAS  PubMed  Google Scholar 

  7. Fukushima M, Nomura H, Murakami Y, Shirasaka T, Aiba K . Estimation of pathways of 5-fluorouracil anabolism in human cancer cells in vitro and in vivo Gan To Kagaku Ryoho 1996 23: 721–731 (in Japanese)

    CAS  PubMed  Google Scholar 

  8. Johnston PG, Lenz HJ, Leichman CG, et al . Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors Cancer Res 1995 551: 1407–1412

    Google Scholar 

  9. Munch-Peterson A, Mygind B . Metabolism of Nucleotides, Nucleoside, and Nucleobases in Microorganism New York: Academic Press; 1983

    Google Scholar 

  10. Neuhard J . Metabolism of Nucleotides, Nucleoside, and Nucleobases in Microorganism New York: Academic Press 1983

    Google Scholar 

  11. Inaba M, Sawada H, Sadata A, Hamada H . Circumvention of 5-fluorouracil resistance inhuman stomach cancer cells by uracil phosphoribosyltransferase gene transduction Jpn J Cancer Res 1999 90: 349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogulski KR, Kim JH, Kim SH, Freytag SO . Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity Hum Gene Ther 1997 8: 73–85

    Article  CAS  PubMed  Google Scholar 

  13. Uckert W, Kammertons T, Haack K, et al . Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo Hum Gene Ther 1998 9: 855–865

    Article  CAS  PubMed  Google Scholar 

  14. Blackburn RV, Galoforo SS, Corry PM, Lee YJ . Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells Cancer Res 1998 58: 1358–1362

    CAS  PubMed  Google Scholar 

  15. Bi WL, Parysek LM, Warwick R, Stambrook PJ . The thymidine kinase/ganciclovir–mediated “suicide” effect is variable in different tumor cells Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi K, Kanazawa H, Chan CT, Hosono T, Takahara M, Sato K . A case of esophageal carcinoma metastatic to the mandible and characterization of two cell lines (T.T and T.Tn) established from the oral tumor Jpn J Maxilla Surg 1990 36: 307–316 (in Japanese)

    Google Scholar 

  17. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector Gene 1991 108: 193–200

    Article  CAS  PubMed  Google Scholar 

  18. Miyake S, Makimura M, Kanegae Y, et al . Efficient generation of recombinant adenoviruses using adenovirus DNA–terminal protein complex and a cosmid bearing the full-length virus genome Proc Natl Acad Sci USA 1996 93: 1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanegae Y, Miyake S, Sato Y, Lee G, Saito I . Adenovirus vector technology: an efficient method for constructing recombinant adenovirus and on/off switching of gene expression Acta Paediatr Jpn 1996 38: 182–188

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida Y, Hamada H . Adenovirus-mediated inducible gene expression through tetracycline-controllable transactivator with nuclear localization signal Biochem Biophys Res Commun 1998 230: 426–430

    Article  Google Scholar 

  21. Jensen KF, Mygind B . Different oligomeric states are involved in the allosteric behavior of uracil phosphoribosyltransferase from Escherichia coli Eur J Biochem 1996 240: 637–645

    Article  CAS  PubMed  Google Scholar 

  22. Schagger H, von Jagow G . Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa Anal Biochem 1987 166: 368–379

    Article  CAS  PubMed  Google Scholar 

  23. Carmichael J, DeGraff WG, Gazdar AF, Minutena JD, Mitchell JB . Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing Cancer Res 1988 48: 589–601

    Google Scholar 

  24. Calabresi P, Chabner BA . Chemotherapy of neoplastic diseases In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG, eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed New York: Pergamon 1995 1225–1287

  25. O'Dwyer, PJ . Biochemical modulation as an approach to reversal of antimetabolite resistance In: Goldstein LJ, Robert FO, eds. Anticancer Drug Resistance: Advances in Molecular and Clinical Research Dordrecht, the Netherlands: Kluwer Academic Publishers 1994 201–216

  26. Sommadossi JP, Bevan R, Ling T, et al . Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function Rev Infect Dis 1988 10: S507–S514

    Article  PubMed  Google Scholar 

  27. Adachi Y, Reynolds PN, Yamamoto M, et al . Midkine promoter-based adenoviral vector gene delivery for pediatric solid tumors Cancer Res 2000 60: 4305–4310

    CAS  PubMed  Google Scholar 

  28. Freeman SM, Abboud CN, Whartenby KA, et al . The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  29. Maria BL, Friedman T . Gene therapy for pediatric brain tumors Semin Pediatr Neurol 1997 4: 333–339

    Article  CAS  PubMed  Google Scholar 

  30. Caruso M, Pham-Nguyen K, Kwong YL, et al . Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma Proc Natl Acad Sci USA 1996 93: 11302–11306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen SH, Kosai K, Xu B, et al . Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival Cancer Res 1996 56: 3758–3762

    CAS  PubMed  Google Scholar 

  32. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy Hum Gene Ther 1998 9: 1323–1333

    Article  CAS  PubMed  Google Scholar 

  33. Mukai M, Kubota S, Morita S, Akanuma A . A pilot study of combination therapy of radiation and local administration of OK-432 for esophageal cancer. Five-year survival and local control rate Cancer 1995 75: 2276–2280

    Article  CAS  PubMed  Google Scholar 

  34. Lan KH, Kanai F, Shiratori Y, et al . In vivo selective gene expression and therapy mediated by adenoviral vectors for human carcinoembryonic antigen-producing gastric carcinoma Cancer Res 1997 57: 4279–4284

    CAS  PubMed  Google Scholar 

  35. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene–attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents Nat Med 1997 3: 639–645

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen DM, Spitz FR, Yen N, Cristiano RJ, Roth JA . Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer J Thorac Cardiovasc Surg 1996 112: 1372–1376 (discussion 6–7)

    Article  CAS  PubMed  Google Scholar 

  37. Song K, Li Z, Seth P, Cowan KH, Sinha BK . Sensitization of cisplatinum by a recombinant adenovirus vector expressing wild-type p53 gene in human ovarian carcinomas Oncol Res 1997 9: 603–609

    CAS  PubMed  Google Scholar 

  38. Ogawa N, Fujiwara T, Kagawa S, et al . Novel combination therapy for human colon cancer with adenovirus-mediated wild-type p53 gene transfer and DNA-damaging chemotherapeutic agent Int J Cancer 1997 73: 367–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Akiko Sadata for technical assistance. This work was supported, in part, by grants from the Japanese Ministry of Health, and the Ministry of Education, Science, and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Shimada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, T., Shimada, H., Ochiai, T. et al. Enhanced growth suppression in esophageal carcinoma cells using adenovirus-mediated fusion gene transfer (uracil phosphoribosyl transferase and herpes simplex virus thymidine kinase). Cancer Gene Ther 8, 512–521 (2001). https://doi.org/10.1038/sj.cgt.7700336

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700336

Keywords

This article is cited by

Search

Quick links