Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Brain lesions in newborns exposed to high-dose magnesium sulfate during preterm labor

Abstract

High-dosage, tocolytic magnesium sulfate (MgSO4) administered to pregnant women during preterm labor can be toxic, and sometimes lethal, for their newborns (Cochrane Database of Systematic Reviews (relative mortality risk 2.82, 95% confidence interval 1.2–6.6)). Based on the results of the Magnesium and Neurologic Endpoints Trial and the work of many others, a unifying triangular concept is proposed to account for the increased prevalence of brain lesions, with their likely resultant mortality, in neonates and infants exposed to high-dose MgSO4 in the context of preterm labor. We review the evidence that: (1) elevated circulating levels of serum ionized magnesium occurring in mothers, and therefore in their babies, at the time of delivery are associated with subsequent neonatal intraventricular hemorrhage (IVH); (2) neonatal IVH is strongly associated with lenticulostriate vasculopathy (LSV), an unusual mineralizing lesion involving the thalami and basal ganglia of the neonate; and, (3) exposure to 50 g or more of tocolytic MgSO4 during preterm labor is associated with the development of LSV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Mittendorf R, Covert R, Boman J, Khoshnood B, Lee KS, Siegler M . Is tocolytic magnesium sulphate associated with increased total paediatric mortality? Lancet 1997; 350: 1517–1518.

    Article  CAS  PubMed  Google Scholar 

  2. Mittendorf R, Dambrosia J, Dammann O, Pryde PG, Lee K-S, Ben-Ami TE et al. Association between maternal serum ionized magnesium levels at delivery and neonatal intraventricular hemorrhage. J Pediatr 2002; 140: 540–546.

    Article  CAS  PubMed  Google Scholar 

  3. Mittendorf R, Covert R, Pryde PG, Lee KS, Ben-Ami T, Yousefzadeh D . Association between lenticulostriate vasculopathy (LSV) and neonatal intraventricular hemorrhage (IVH). J Perinatol 2004; 24: 700–705.

    Article  PubMed  Google Scholar 

  4. Mittendorf R, Kuban K, Pryde PG, Gianopoulos JG, Yousefzadeh D . Antenatal risk factors associated with the development of lenticulostriate vasculopathy (LSV) in neonates. J Perinatol 2005; 25: 101–107.

    Article  PubMed  Google Scholar 

  5. Crowther CA, Hiller JE, Doyle LW . Magnesium sulphate for preventing preterm birth in threatened preterm labour. Cochrane Database Syst Rev. March 2003.

  6. Nelson KB, Grether JK . Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics 1995; 95: 263–269.

    CAS  PubMed  Google Scholar 

  7. Allred EN, Dammann O, Kuban KK, Leviton A, Pagano M, Stewart JE et al. Prenatal magnesium sulfate exposure and risk of cerebral palsy. JAMA 1997; 277: 1033–1034.

    Article  CAS  PubMed  Google Scholar 

  8. Dammann O, Leviton A, Gappa M, Dammann CEL . Lung and brain damage in preterm newborns: antecedents and longterm outcome. BJOG 2005; 112: 4–9.

    Article  PubMed  Google Scholar 

  9. Murata Y, Itakura A, Matsuzawa K, Okumura A, Wakai K, Mizutani S . Possible antenatal and perinatal related factors in development of cystic periventricular leukomalacia. Brain Dev 2005; 27: 17–21.

    Article  PubMed  Google Scholar 

  10. Keirse MJNC, Grant A, King JF . Preterm labor. In: Enkin M, Keirse MJNC, Renfrew MJ, Neilson JP (eds). A Guide to Effective Care in Pregnancy and Childbirth. Oxford University Press: Oxford, UK; 1995, pp 161–173.

    Google Scholar 

  11. Gyetvai K, Hannah ME, Hodnett ED, Ohlsson A . Tocolytics for preterm labor: a systematic review. Obstet Gynecol 1999; 94: 869–877.

    CAS  PubMed  Google Scholar 

  12. Higby K, Xenakis EM, Pauerstein CJ . Do tocolytic agents stop preterm labor? A critical and comprehensive review of efficacy and safety. Am J Obstet Gynecol 1993; 168: 1247–1256; discussion 1256–1259.

    Article  CAS  PubMed  Google Scholar 

  13. Higby K, Suiter CR . A risk–benefit assessment of therapies for premature labor. Drug Saf 1999; 21: 35–56.

    Article  CAS  PubMed  Google Scholar 

  14. Lucas MJ, Leveno KJ, Cunningham FG . A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995; 333: 201–205.

    Article  CAS  PubMed  Google Scholar 

  15. Eclampsia Trial Collaborative Group. Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 1995; 345: 1455–1463.

  16. Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet 2002; 359: 1877–1890.

    Article  PubMed  Google Scholar 

  17. Belfort MA, Anthony J, Saade GR, Allen Jr JC . A comparison of magnesium sulfate and nimodipine for the prevention of eclampsia. N Engl J Med 2003; 348: 304–311.

    Article  CAS  PubMed  Google Scholar 

  18. Dammann O, Dammann CEL, Leviton A . Magnesium sulfate and cerebral palsy in preterm infants (article in German). Geburtsh Frauenheilk 1997; 57: 670–674.

    Article  Google Scholar 

  19. Grether JK, Hoogstrate J, Walsh-Greene E, Nelson KB . Magnesium sulfate for tocolysis and risk of spastic cerebral palsy in premature children born to women without preeclampsia. Am J Obstet Gynecol 2000; 183: 717–725.

    Article  CAS  PubMed  Google Scholar 

  20. Mittendorf R, Dambrosia J, Pryde PG, Lee KS, Gianopoulos JG, Besinger R et al. Association between the use of antenatal magnesium sulfate in preterm labor and adverse health outcomes in infants. Am J Obstet Gynecol 2002; 186: 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  21. Mittendorf R, Covert R, Elin R, Pryde PG, Khoshnood B, Lee K . Umbilical cord serum ionized magnesium level and total pediatric mortality. Obstet Gynecol 2001; 98: 75–78.

    CAS  PubMed  Google Scholar 

  22. Naccasha N, Hinson R, Montag A, Ismail M, Bentz L, Mittendorf R . Association between funisitis and elevated interleukin-6 in cord blood. Obstet Gynecol 2001; 97: 220–224.

    CAS  PubMed  Google Scholar 

  23. Mittendorf R, Montag AG, MacMillan W, Janeczek S, Pryde PG, Besinger RE et al. Components of the systemic fetal inflammatory response syndrome as predictors of impaired neurologic outcomes in children. Am J Obstet Gynecol 2003; 188: 1438–1444; discussion 1444–1446.

    Article  CAS  PubMed  Google Scholar 

  24. Mittendorf R, Covert R, Montag AG, elMasri W, Muraskas J, Lee K-S et al. Relationships between fetal inflammatory response syndrome and bronchopulmonary dysplasia in newborns. J Perinat Med 2005; 33: 428–434.

    Article  PubMed  Google Scholar 

  25. Ben-Ami T, Yousefzadeh D, Backus M, Reichman B, Kessler A, Hammerman-Rozenberg C . Lenticulostriate vasculopathy in infants with infections of the central nervous system sonographic and Doppler findings. Pediatr Radiol 1990; 20: 575–579.

    Article  CAS  PubMed  Google Scholar 

  26. Papile LA, Burstein J, Burstein R, Koffler H . Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1500 gm. J Pediatr 1978; 92: 529–534.

    Article  CAS  PubMed  Google Scholar 

  27. Psychological Corporation. Bayley Scales of Infant Development. 2nd edn. Harcourt Brace: Orlando, FL; 1993.

  28. Stigson L, Kjellmer I . Serum levels of magnesium at birth related to complications of immaturity. Acta Paediatr 1997; 86: 991–994.

    Article  CAS  PubMed  Google Scholar 

  29. Fowlie PW, Tarnow-Mordi WO, Gould CR, Strang D . Predicting outcome in very low birthweight infants using an objective measure of illness severity and cranial ultrasound scanning. Arch Dis Child Fetal Neonatal Ed 1998; 78: F175–F178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coley BD, Rusin JA, Boue DR . Importance of hypoxic/ischemic conditions in the development of cerebral lenticulostriate vasculopathy. Pediatr Radiol 2000; 30: 846–855.

    Article  CAS  PubMed  Google Scholar 

  31. Cabanas F, Pellicer A, Morales C, Garcia-Alix A, Stiris TA, Quero J . New pattern of hyperechogenicity in thalamus and basal ganglia studied by color Doppler flow imaging. Pediatr Neurol 1994; 10: 109–116.

    Article  CAS  PubMed  Google Scholar 

  32. Rorke LB, Spiro AJ . Cerebral lesions in congenital rubella syndrome. J Pediatr 1967; 70: 243–255.

    Article  CAS  PubMed  Google Scholar 

  33. Teele RL, Hernanz-Schulman M, Sotrel A . Echogenic vasculature in the basal ganglia of neonates: a sonographic sign of vasculopathy. Radiology 1988; 169: 423–427.

    Article  CAS  PubMed  Google Scholar 

  34. Mittendorf R, Pryde P, Khoshnood B, Lee KS . If tocolytic magnesium sulfate is associated with excess total pediatric mortality, what is its impact? Obstet Gynecol 1998; 92: 308–311.

    CAS  PubMed  Google Scholar 

  35. Scudiero R, Khoshnood B, Pryde PG, Lee KS, Wall S, Mittendorf R . Perinatal death and tocolytic magnesium sulfate. Obstet Gynecol 2000; 96: 178–182.

    CAS  PubMed  Google Scholar 

  36. Cox SM, Sherman ML, Leveno KJ . Randomized investigation of magnesium sulfate for prevention of preterm birth. Am J Obstet Gynecol 1990; 163: 767–772.

    Article  CAS  PubMed  Google Scholar 

  37. Nandakumaran M, Dashti HM, Al-Zaid NS . Maternal–fetal transport kinetics of copper, selenium, magnesium and iron in perfused human placental lobule: in vitro study. Mol Cell Biochem 2002; 231: 9–14.

    Article  CAS  PubMed  Google Scholar 

  38. Handwerker SM, Altura BT, Jones KY, Altura BM . Maternal–fetal transfer of ionized serum magnesium during the stress of labor and delivery: a human study. J Am Coll Nutr 1995; 14: 376–381.

    Article  CAS  PubMed  Google Scholar 

  39. Pryde PG, Borg MJ, Mittendorf R, Elin RJ . Cord-blood ionized magnesium (iMg) exceeds maternal levels in both untreated and tocolytic magnesium sulfate treated preterm neonates. Am J Obstet Gynecol 1999; 184: S50.

    Google Scholar 

  40. Mittendorf R, Stratford R, Khoshnood B, Lee KS, Pryde PG . Persistence of elevated serum magnesium levels in the neonate. Am J Obstet Gynecol 2001; 184: S50.

    Google Scholar 

  41. Wang HS, Kuo MF . Sonographic lenticulostriate vasculopathy in infancy with tic and other neuropsychiatric disorders developed after 7 to 9 years of follow-up. Brain Dev 2003; 25 (Suppl 1): S43–S47.

    Article  PubMed  Google Scholar 

  42. Roland EH, Hill A . Germinal matrix-intraventricular hemorrhage in the premature newborn: management and outcome. Neurol Clin 2003; 21: 833–851, vi–vii.

    Article  PubMed  Google Scholar 

  43. Gawaz M, Ott I, Reininger AJ, Neumann FJ . Effects of magnesium on platelet aggregation and adhesion. Magnesium modulates surface expression of glycoproteins on platelets in vitro and ex vivo. Thromb Haemost 1994; 72: 912–918.

    Article  CAS  PubMed  Google Scholar 

  44. Assaley J, Baron JM, Cibils LA . Effects of magnesium sulfate infusion upon clotting parameters in patients with pre-eclampsia. J Perinat Med 1998; 26: 115–119.

    Article  CAS  PubMed  Google Scholar 

  45. Rhee E, James A, Walker C, Ortel T . Maternal and fetal platelet function after maternal exposure to magnesium sulfate. Am J Obstet Gynecol 2002; 185: S151.

    Article  Google Scholar 

  46. D'Angelo EK, Singer HA, Rembold CM . Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+. J Clin Invest 1992; 89: 1988–1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turkyilmaz C, Turkyilmaz Z, Atalay Y, Soylemezoglu F, Celasun B . Magnesium pre-treatment reduces neuronal apoptosis in newborn rats in hypoxia–ischemia. Brain Res 2002; 955: 133–137.

    Article  CAS  PubMed  Google Scholar 

  48. Sameshima H, Ikenoue T . Long-term magnesium sulfate treatment as protection against hypoxic–ischemic brain injury in seven-day-old rats. Am J Obstet Gynecol 2001; 184: 185–190.

    Article  CAS  PubMed  Google Scholar 

  49. Bareyre FM, Saatman KE, Raghupathi R, McIntosh TK . Postinjury treatment with magnesium chloride attenuates cortical damage after traumatic brain injury in rats. J Neurotrauma 2000; 17: 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  50. Maulik D, Zanelli S, Numagami Y, Ohnishi ST, Mishra OP, Delivoria-Papadopoulos M . Oxygen free radical generation during in-utero hypoxia in the fetal guinea pig brain: the effects of maturity and of magnesium sulfate administration. Brain Res 1999; 817: 117–122.

    Article  CAS  PubMed  Google Scholar 

  51. Maulik D, Qayyum I, Powell SR, Karantza M, Mishra OP, Delivoria-Papadopoulos M . Post-hypoxic magnesium decreases nuclear oxidative damage in the fetal guinea pig brain. Brain Res 2001; 890: 130–136.

    Article  CAS  PubMed  Google Scholar 

  52. Milani H, Lepri ER, Giordani F, Favero-Filho LA . Magnesium chloride alone or in combination with diazepam fails to prevent hippocampal damage following transient forebrain ischemia. Braz J Med Biol Res 1999; 32: 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  53. Greenwood K, Cox P, Mehmet H, Penrice J, Amess PN, Cady EB et al. Magnesium sulfate treatment after transient hypoxia–ischemia in the newborn piglet does not protect against cerebral damage. Pediatr Res 2000; 48: 346–350.

    Article  CAS  PubMed  Google Scholar 

  54. Sameshima H, Ota A, Ikenoue T . Pretreatment with magnesium sulfate protects against hypoxic–ischemic brain injury but postasphyxial treatment worsens brain damage in seven-day-old rats. Am J Obstet Gynecol 1999; 180: 725–730.

    Article  CAS  PubMed  Google Scholar 

  55. Leviton A, Paneth N, Susser M, Reuss ML, Allred EN, Kuban K et al. Maternal receipt of magnesium sulfate does not seem to reduce the risk of neonatal white matter damage. Pediatrics 1997; 99: E2.

    Article  CAS  PubMed  Google Scholar 

  56. Paneth N, Jetton J, Pinto-Martin J, Susser M . Magnesium sulfate in labor and risk of neonatal brain lesions and cerebral palsy in low birth weight infants. The Neonatal Brain Hemorrhage Study Analysis Group. Pediatrics 1997; 99: E1.

    Article  CAS  PubMed  Google Scholar 

  57. McDonald JW, Silverstein FS, Johnston MV . Magnesium reduces N-methyl-D-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci Lett 1990; 109: 234–238.

    Article  CAS  PubMed  Google Scholar 

  58. Marret S, Gressens P, Gadisseux JF, Evrard P . Prevention by magnesium of excitotoxic neuronal death in the developing brain: an animal model for clinical intervention studies. Dev Med Child Neurol 1995; 37: 473–484.

    CAS  PubMed  Google Scholar 

  59. Holling EE, Leviton A . Characteristics of cranial ultrasound white matter echolucencies that predict disability: a review. Dev Med Child Neurol 1999; 41: 136–139.

    Article  CAS  PubMed  Google Scholar 

  60. Crowther CA, Hiller JE, Doyle LW, Haslam RR . Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial. JAMA 2003; 290: 2669–2676.

    Article  CAS  PubMed  Google Scholar 

  61. Marret S, Zupan V, Marpeau L, Adde-Michel C, Benichou J, (The Premag Trial Group). Prenatal magnesium sulphate (MgSO4) and neuroprotection in preterm infants: a randomised controlled trial. PAS 2005; 57: 1547.

    Google Scholar 

  62. Mittendorf R, Roizen NJ, Pryde PG . The risks of extending the controversial use of tocolytic magnesium sulfate for the purpose of neuroprotection in preterm labor. J Perinatol 2004; 24: 465–466.

    Article  PubMed  Google Scholar 

  63. Di Renzo GC, Mignosa M, Gerli S, Burnelli L, Luzi G, Clerici G et al. The combined maternal administration of magnesium sulfate and aminophylline reduces intraventricular hemorrhage in very preterm neonates. Am J Obstet Gynecol 2005; 192: 433–438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for the Magnesium and Neurologic Endpoints Trial at the University of Chicago was provided by the United Cerebral Palsy (UCP) Research and Educational Foundation, Washington, DC. Olaf Dammann received support from the Wilhelm Hirte Stiftung, Hannover, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mittendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittendorf, R., Dammann, O. & Lee, KS. Brain lesions in newborns exposed to high-dose magnesium sulfate during preterm labor. J Perinatol 26, 57–63 (2006). https://doi.org/10.1038/sj.jp.7211419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211419

Keywords

This article is cited by

Search

Quick links