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The estimation of heritabilities and genetic correlations is based on the assumption that the trait
distributions are normal. When the distributions are not normal it is advisable to transform the data
to produce normality. However, it is possible that no suitable transformation can be found. The
purpose of the present paper is to point out that the threshold model of quantitative genetics can be
used as a generalized transformation. To utilize this method it is only necessary to divide the data at
the median (approximately) and code the two halves as 0 and 1. Estimates can then be made using
algorithms outlined herein. A simulation study shows that the threshold transformation gave
unbiased estimates of the heritability and genetic correlation in all cases. The 95% con®dence limits
correctly included the true heritability value in the required 95% of cases, while the estimated
con®dence region for the genetic correlation was also correct provided that the geometric mean
heritability was greater than approximately 0.15, a restriction that applied also to the normally
distributed data. Con®dence intervals estimated from the non-normal data were consistently too
small. The method is illustrated using data on the proportion of diapausing eggs produced by the
cricket, Allonemobius socius.
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Introduction

A fundamental assumption in the estimation of genetic
parameters is that the underlying trait distributions are
normal (Bulmer, 1985). Unfortunately it is frequently
found that the distributions are not normal. There are
typically two alternative solutions: ®rst, the lack of
normality can be ignored, and second a transformation
can be sought that normalizes the data (Falconer, 1989).
The former approach is problematical because it is not
clear to what extent non-normality can bias estimates
of heritability or genetic correlation. However, as noted
by Falconer (1989; pp 297±298), `The ®rst purpose
of experimental observations is the description of the
genetic properties of the population, and a scale
transformation obscures rather than illuminates the
description.'. Nevertheless, when a transformation exists
that does normalize the data it would seem wise to
estimate the parameters either on the transformed scale
alone or on both scales to assess the possible bias
introduced by the lack of normality. If the two sets of
estimates are found to be very similar it may be more
`illuminating' to use the untransformed rather than the
transformed data. Unfortunately there may not exist

any simple transformation, such as the logarithmic, that
normalizes the data. The purpose of the present paper is
to point out that the threshold model of quantitative
genetics itself represents a general normalizing transfor-
mation.

To make use of the threshold model we need simply
assume that there exists some transformation that will
normalize the data. Given that such a transformation
exists, we can estimate the heritability of the trans-
formed data even without actually doing the transfor-
mation by making use of the threshold model of
quantitative genetics. According to this model a con-
tinuously distributed trait is manifested as two pheno-
types, which are determined by a threshold of sensitivity,
individuals below the threshold appearing as one phe-
notype and individuals above the threshold appearing as
the alternate (Falconer, 1989). Now suppose we have
some trait such as body size that we know to be
normally distributed: we can in principle use the
threshold model by arbitrarily assigning a threshold
and scoring animals as 0 or 1, depending upon whether
they are larger or smaller than the threshold. We shall
obtain the same heritability of body size by either using
the data directly or in the 0,1 form and using the
threshold method. Normally we would adopt the
former method, because to classify individuals into
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dichotomous categories obviously loses information and
thus will generally increase the standard error of the
estimate. If, however, the data are not normally distri-
buted and we cannot ®nd a transformation that normal-
izes the data we can check on the robustness of the
estimate of the heritability by assuming that a normalizing
transformation exists, dividing the data into two sets
(preferably close to equality) and estimating the herita-
bility of the `normalized' trait using the threshold model.
To demonstrate the utility of this approach I present

results from a simulation study that considers the
threshold model as a transformation for the estimate
of both the heritability and the genetic correlation.

Methods

Estimating heritability and genetic correlations
by the threshold model

To estimate heritability using the threshold transforma-
tion we proceed in three steps.
1 Divide the data set into two halves of approximately
equal size (which minimizes the standard error) and
code one half as zeros and the other as ones.
2 Estimate heritability on the 0±1 scale (h20,1) using the
same procedure for the particular breeding design as
would be used if the data were continuous. The
threshold transformation is not suitable for o�spring±
parent designs because the estimate is biased downwards
(Ro�, 1997; p. 58).
3 Estimate heritability on the `underlying' untrans-
formed scale using the formula (Dempster & Lerner,
1950)

h2 � h2
0;1

p�1 p�
z2

�1�

here p is the mean proportion in the population and z is
the ordinate on the standardized normal curve that
corresponds to a probability p (e.g. if p� 0.3,). The
mean proportion p is approximated by the number of
zeros (or ones) divided by the total number of obser-
vations. However, if the number of individuals in a
family varies, then a weighted estimate is better: for
example, for full sibs use the mean proportion per
family.
The standard error of the heritability, SE(h2), is

obtained in the same manner,

SE�h2� � SE�h2
0;1�

p�1 p�
z2

�2�

The genetic correlation is estimated using the 0±1 data
and the same procedure for the particular breeding

design as would be used if the data were continuous. At
least for full-sib data no correction factor is required
(Mercer & Hill, 1984). The standard error can be esti-
mated using the jackknife procedure (Ro� & Preziosi,
1994).

Description of the simulation model

The model simulated a full-sib breeding design with 100
families of 10 individuals per family. For the ®rst series
of runs I examined the e�cacy of the threshold model to
estimate the heritability. For a given heritability I
generated 1000 (100 families ´ 10 individuals per fam-
ily) values of trait X using the algorithm (Ro� &
Preziosi, 1994)

Xi;j � ax;i

��������
1

2
h2
x

r
� bx;i;j

����������������
1

1

2
h2
x

r
�3�

where Xi,j is the value of trait X for individual j in family
i; ax,i is a random normal value, N(0,1), common to
the ith family; bx,i,j is a random normal value, N(0,1),
for the jth individual from the ith family.
Non-normal phenotypic distributions were created by

applying some conversion formula f(Xi,j). Heritability
estimates were then made using the normally distributed
values and the untransformed converted phenotypic
values. Standard errors were estimated using the for-
mula (Ro�, 1997; eqn 2.28)

SE�h2� � 2�1 t��1� �n 1�t� 2

n�n 1��N 1�
� �1=2

�4�

where t is the intraclass correlation coe�cient, n is
family size and N is the number of families.
To compare the above estimates with those obtained

using the threshold transformation I divided the original
data set into two by designating all values less than zero
as 0 and all those above zero as 1 and then proceeding as
described in the previous section. Note that the same
result would be obtained by dividing the converted data
set at its median value: thus regardless of the conversion
formula used the threshold transformation gives the
same heritability estimate. I examined four non-normal
distributions using the conversion formulae: (1)
f(x)� log(4 + x); (2) f(x)� ex; (3) f(x)� x3 + x; (4)
f(x)� 1/x (Fig. 1). The logarithmic conversion produced
a distribution mildly skewed to the left with a modest
kurtosis, whereas the exponential conversion produced a
strong right skew and larger kurtosis (Fig. 1, Table 1).
Both the polynomial and hyperbolic conversions gener-
ated symmetric distributions, the former with a kurtosis
approximately midway between the logarithmic and
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exponential transformations (Fig. 1, Table 1). The
hyperbolic was by far the most non-normal distribution
being, in fact, bimodal (Fig. 1). For each replicate there
were six heritability estimates. For heritability values
ranging from 0.1 to 0.9 I generated at each value 10 000
replicates from which I calculated the mean heritability
estimate, the mean standard error and the probability

the approximate 95% con®dence region (��2 SE)
actually enclosed the true heritability.

To examine the e�ect of non-normality on genetic
correlation estimates and the ability of the threshold
transformation to overcome bias I generated for each
individual a correlated trait Yi,j using the algorithm
(Ro� & Preziosi, 1994).

Fig. 1 Illustrations of the six distri-
butions used in the simulation study.
The four non-normal distributions

were generated using 10 000 data
points.

x (normal) log(4 + x) ex x3 + x 1/x

Median )0.012 1.383 0.988 )0.012 )0.382
Mean )0.005 1.349 1.644 )0.010 0.140
Variance 1.007 0.078 4.492 21.751 5686.549
Skewness (G1) 0.011 )1.206 5.030 )0.146 32.588
Kurtosis (G2) )0.037 5.129 48.171 23.199 2074.896

Table 1 Sample statistics for the
converted variable, f(x), based on
10 000 values
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where ax,i, ay,i are random normal values, N(0,1),
common to the ith family; bx,i,j, by,i,j are random normal
values, N(0,1), of the jth individual from the ith family;
hx
2, hy

2 are the heritabilities of traits X and Y, respect-
ively; rG is the genetic correlation between traits X and
Y; rE is the environmental correlation between traits X
and Y, given by

rE �
rP 1

2 rEhxhy�����������������������������������������
1 1

2 h2
x

�
1 1

2 h2
y
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where rP is the phenotypic correlation.
I examined the following sets of combinations: (1)

rP� rG� 0.5, hx
2� hy

2� 0.1 to 0.9 in increments of 0.1;
(2) rP� rG� 0.2, hx

2� hy
2� 0.5; (3) rP� rG� 0.8,

hx
2� hy

2� 0.2; and (4) rP� rG� 0.8, hx
2� hy

2� 0.7. In all
of these cases I used 10 000 replicates and applied the
same conversion function to both traits. I repeated case
(1) using all possible model combinations. As a further
test I generated 1000 parameter combinations in which
rP and rG were independently drawn from a random
uniform distribution between )1 and +1, subject to
the condition that )1 < rE < + 1, hx

2 and hy
2 were

independently drawn from a random uniform distribu-
tion between 0 and 1, and the conversion functions for X
and Y drawn independently and with equal probability
from the ®rst three conversion functions (the hyperbolic
function was not used because, as discussed below,
it gave uniformly unacceptable estimates). For each
parameter combination I estimated for 100 replicates the
mean genetic correlation for the normally distributed
data, the threshold-transformed data, and from the non-
normal data without transformation. Because of the
computer time required to estimate the standard errors,
these were computed for 100 of the above random
combinations but using 1000 replications in each case.

Results

Simulation results

There was excellent agreement between the heritability
estimate obtained from the original data and that
estimated using the threshold transformation (Fig. 2).
The e�ect of the mild skew introduced by the logarith-

mic function had only a small e�ect on the heritability
estimate but the other three non-normal distributions
produced underestimates of the true heritability, with
the `hyperbolic' data giving a gross underestimate
(Fig. 2). As expected, the average estimated standard
error for the threshold transformation was larger than
obtained from the normally distributed data (Fig. 2).
With the exception of the `hyperbolic' data, the estima-
ted standard errors of the non-normal data sets were
relatively close to that estimated from the normally
distributed data. An overall measure that incorporates
the bias in the estimate and the variation about the mean
is the mean square error, de®ned as MSE� bias2 +
variance of the estimate. As might be expected from the
above results, the logarithmic distribution had only a
small e�ect on the MSE relative to the normal distri-
bution (Fig. 2). The threshold transformation produced
a substantially lower MSE than untransformed esti-
mates made from any of the other distributions (Fig. 2:
note the log scale).
Because of the downward bias of the non-normal

data, the estimated 95% con®dence interval was typic-
ally considerably smaller than the desired interval
(Table 2). Except for the lowest heritability the thresh-
old transformation correctly estimated the 95% con®d-
ence interval, whereas there was a small bias towards a
con®dence interval that was slightly too small in the case
of the normally distributed data (Table 2).
The results from the six di�erent analyses of the

estimation of the genetic correlation were essentially
identical and so here I present only the results for the
®rst (rP� rG� 0.5, hx

2� hy
2� 0.1 to 0.9 in increments of

0.1, both traits follow the same distribution) and sixth
(random assignment of parameter values and models)
set of combinations. Considering ®rst the results from
case 1. The genetic correlation estimates for the hyper-
bolic data were extremely poor giving values greater
than +2 or less than )2 in approximately 90% of cases.
For the other non-normal distributions the genetic
correlation estimates underestimated the true value,
the underestimate increasing with the heritability
(Fig. 3). However, with the exception of the hyperbolic
data, this tendency is less than 10% of the estimate
(Fig. 3). The mean estimates from the threshold trans-
formation are all within 5% of the correct value.
Because of the very poor estimates obtained from the

hyperbolic data the `random assignment' analysis was
restricted to the other three non-normal distributions. In
some cases the estimated genetic correlation was inor-
dinately high or low: because such estimates are likely to
be discarded and hence not produce incorrect conclu-
sions I dropped all estimates of the genetic correlation
greater than 2 or less than )2. The probability of
obtaining such discrepant estimates depends upon the
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heritabilities, with geometric mean heritabilities less
than approximately 0.3 frequently producing unreason-
able estimates (Fig. 4). Estimated genetic correlations
from normally distributed data were less likely to
produce unacceptable estimates than data transformed
using the threshold model (mean number of `acceptable'
replicates for normal data � 97.1 vs. 95.5 for threshold-

Table 2 The proportion of cases (determined from 1000
replicates per heritability) in which the estimated 95%
con®dence intervals included the true heritability

h2
x

(normal) Threshold
log

(4 + x) ex x3 + x 1/x

0.1 0.95 0.98 0.93 0.80 0.87 0.11
0.2 0.94 0.95 0.93 0.55 0.72 0.01
0.3 0.94 0.95 0.92 0.41 0.62 0.00
0.4 0.94 0.95 0.91 0.33 0.53 0.00
0.5 0.94 0.95 0.92 0.29 0.46 0.00
0.6 0.94 0.95 0.91 0.27 0.40 0.00
0.7 0.95 0.95 0.92 0.24 0.35 0.00
0.8 0.95 0.95 0.91 0.23 0.32 0.00
0.9 0.95 0.95 0.91 0.21 0.29 0.00

Fig. 3 Mean estimated genetic correlation as a function of the

heritability and data distribution. Each mean estimate based
on 10 000 replicates.

Fig. 2 Top left panel: the mean
estimated heritability for the six
di�erent data distributions. Top right

panel: the mean of the estimated
standard error for the above herita-
bility estimates. Bottom panel: mean

square error (MSE) for the six
distributions.
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transformed data; t� 13.5, d.f.� 999, P < 0.0005).
Similarly the threshold transformation produced more
`acceptable' estimates than the non-normal data (mean
`acceptable' for the non-normal data � 93.9; t� 13.6,
d.f.� 999, P < 0.0005).
There was no evidence for a bias in the genetic

correlation estimate for either the threshold transfor-
mation (�)0.003, t� 1.10, d.f.� 999, P� 0.27) or the
untransformed data (�)0.003, t� 1.27, d.f.� 999,
P� 0.27). The heritability estimates from the normal
data were less variable (mean standard deviation of
estimate� 0.157) than either the threshold data (0.202)
or the non-normal data (0.188). Overall the analyses
indicate that the threshold transformation provides a
satisfactory estimate of the genetic correlation if there is
no transformation that will produce a continuous
normal distribution.
The estimated con®dence intervals using the non-

normal data were smaller than those for either the normal
or threshold-transformed data (Table 3). When the

geometric mean heritability was less than approximately
0.15 all three types of distributions tended to generate
con®dence intervals that were too small but this propen-
sity was evident in the non-normal distributions for all
values of the geometric mean heritability (Fig. 5). There
was a signi®cant di�erence in the proportion of times,
P(rG), that the estimated 95% con®dence interval en-
closed the true genetic correlation (F2,297� 4.67,
P� 0.010). Pairwise comparison using Tukey's test
showed that there was no di�erence between the normal
and threshold-transformed data (P� 0.911), but both the
normal and transformed data were signi®cantly di�erent
from the non-normal data (comparing normal vs. non-
normal, P� 0.041; comparing threshold-transformed vs.
non-normal, P� 0.013).

An example

To illustrate the technique using a real data set I shall
use data on the production of diapause and non-
diapause eggs by the cricket Allonemobius socius (Ro� &
Bradford, 2000). In this study egg diapause was consid-
ered a trait of the mother and de®ned as the proportion
of diapausing eggs produced by a female of a given age.
The proportion of eggs varied according to age and
rearing environment. The e�ects of two environments,
corresponding to early and late periods in the summer,
and four age groups (days 9±12, 13±16, 17±20, 21±24,
post eclosion) were assessed. As can be seen from the
two representative distributions shown in Fig. 6, the
distribution of diapause proportion was highly non-
normal at all ages and in both environments. In the

Fig. 4 The number of `acceptable' estimates of the genetic
correlation as a function of the geometric mean of the
heritabilities. The maximum number possible number of
`acceptable' estimates per geometric heritability is 100.

Table 3 Mean proportion of times, P(rG), that the
estimated 95% con®dence interval actually enclosed the
true value of the genetic correlation. For each of 100
parameter combinations P(rG) was estimated from 1000
replicates

Distributions Mean SE Median

Both normal 0.938 0.004 0.944
Both transformed using
the threshold model

0.940 0.004 0.948

Both non-normal 0.921 0.006 0.937

Fig. 5 The proportion of times the estimated 95% con®dence
interval of the estimated genetic correlation included the
true genetic correlation. Each estimate is based on 1000

replicates.

A GENERAL TRANSFORMATION 409

Ó The Genetics Society of Great Britain, Heredity, 86, 404±411.



original analysis Ro� & Bradford (2000) estimated the
heritabilities without transforming the data but assessed
the statistical signi®cance by a randomization test.

Approximately 50% of females produced only diap-
ausing eggs at a given age: therefore, to use the threshold
transformation I designated the categories as 1� all
diapausing eggs and 0 � some diapausing eggs. In the
early environment the heritabilities estimated using the
threshold transformation are consistently larger than
those of the untransformed data (Table 4). As expected,
the standard errors from the threshold transformed data
are larger than those of the untransformed data. The
randomization test shows that both sets of estimates are
highly signi®cant, as do the con®dence regions estimated
using the standard errors (Table 4). In contrast to the
results for the early environment, the two sets of
estimates in the late environments are very similar.
The standard errors of the threshold estimates are larger
than those of the untransformed data and in two cases
the 95% con®dence region includes zero. The random-
ization test indicates that in all cases the heritabilities are

signi®cant (if the probabilities are not Bonferonni
adjusted). These results suggest that it is both worth-
while to use the threshold transformation and to apply
the randomization test.

According to the simulation analysis the genetic
correlation estimate can be estimated directly from the
untransformed data. For the A. socius data I calculated
the genetic correlation between age groups and found,
as predicted, that the two sets of estimates corresponded
very well (Fig. 7). One set of estimates diverged, the
genetic correlation from the untransformed data being
0.55, whereas that from the threshold transformed data
was 0.96. The standard errors for both estimates are
large (0.39 and 0.30, respectively) and hence the di�er-
ence is probably not meaningful.

Fig. 6 Two examples of the distribu-
tion of the proportion of diapausing
eggs laid by female Allonemobius

socius. The left panel shows the dis-
tribution for females aged 9±12 days
in the late environment, and the right

panel for females aged 13±16 in the
late environment.

Table 4 Heritability estimates for the proportion
diapausing eggs produced by female Allonemobius socius
under two rearing conditions and at four ages

Traits  h2 SE Prandà

Early environment
P1, D1 0.40, 0.50 0.10, 0.16 0.0002, 0.0002
P2, D2 0.43, 0.78 0.11, 0.19 0.0002, 0.0002
P3, D3 0.49, 0.67 0.11, 0.17 0.0002, 0.0002
P4, D4 0.48, 0.73 0.13, 0.19 0.0002, 0.0002

Late environment
P1, D1 0.23, 0.22 0.10, 0.17 0.0038, 0.0382
P2, D2 0.29, 0.32 0.09, 0.14 0.0002, 0.0060
P3, D3 0.30, 0.42 0.10, 0.18 0.0004, 0.0010
P4, D4 0.17, 0.36 0.09, 0.20 0.0184, 0.0042

 Pi, proportion of diapausing eggs at age i. Di, proportion of
diapausing eggs transformed using the threshold model, where
1� only diapausing eggs and 0 = some nondiapausing eggs.
àProbability obtained from randomization method.

Fig. 7 Correspondence between the genetic correlation esti-
mated using the untransformed data (P) and that obtained
using the threshold transformation (D). The genetic correla-

tions are for proportion of diapausing eggs produced at
di�erent ages within the same environment.
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Conclusions

The threshold transformation gave unbiased estimates
of the heritability and genetic correlation in all cases.
Further, the 95% con®dence limits correctly included
the true heritability value in the required 95% of cases.
The estimated con®dence region for the genetic corre-
lation was also correct provided that the geometric
mean heritability was greater than approximately 0.15, a
restriction that applied also to the normally distributed
data (Fig. 5). Thus in the absence of a continuous
transformation that produces a normal distribution the
threshold transformation is an appropriate method.
However, if a continuous transformation is available
then this is to be preferred because it will give smaller
con®dence regions. The method is readily applied to
simple breeding designs such as the full- or half-sib
method (Ro�, 1997; pp 55±57), but di�culties could
arise in more complex designs (e.g. designs which
include several generations of relatives of di�erent
degree). In these cases the approach can be applied
using a maximum-likelihood approach (for an example,
of its application to a selection experiment see Ro�,
1997; pp 143±146).
Even data that are rather badly non-normal (e.g.

f(x)� ex) give estimates of heritability and genetic corre-
lation that are reasonably close to the correct value
(Figs 1, 3). The problem is that the con®dence regions
are severely underestimated in the case of the heritability
and on average modestly so for the genetic correlation
(although gross underestimates can occur, Fig. 5). Thus
whereas the point estimates of heritability and genetic
correlation are relatively unbiased, the downwards bias

of the estimated con®dence region hinders interpret-
ation of any single estimate. Therefore, given data that
cannot be transformed it would seem prudent to
examine the data using both the raw values and those
that have been transformed using the threshold model. If
the threshold transformation produces estimates that
change the conclusions reached using the raw values
then the latter should be viewed with scepticism and the
results from the threshold transformation preferred.
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