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Complex binary traits have a dichotomous phenotypic expression but do not show a simple
Mendelian segregation ratio. These traits are considered to be jointly controlled by the actions of
several genes and a random environmental e�ect. The binary phenotype and the underlying factor are
assumed to be linked through a threshold model. The underlying factor, referred to as the liability, is
treated as a regular but unobservable quantitative character. Mapping quantitative trait loci (QTL)
can be performed directly on the liability. Methods of QTL mapping for the liability of a complex
binary trait have been well developed in line-crossing experiments. However, such a method is not
available in outbred populations which usually consist of many independent pedigrees (families). In
this study, we develop a method to analyse jointly multiple families of an outbred population. The
method is developed based on a ®xed-model approach, i.e. the QTL e�ects, rather than the variance,
are estimated and tested. After the test, the estimated e�ects are then converted into a single estimate
of the QTL variance by taking into consideration errors in the estimated e�ects. The QTL e�ects and
variance±covariance matrix of the estimates are obtained by a fast Fisher-scoring method. Monte
Carlo simulations show that the method is not only powerful but also generates very accurate
estimates of QTL variances.
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Introduction

Many characters of biological interest and economic
importance vary in a dichotomous form, i.e. presence or
absence, but are not inherited in a simple Mendelian
fashion. These traits are called complex binary traits.
Complex binary traits are presumably controlled by a
number of genetic and environmental factors. Because
of this, these traits belong to the category of quantitative
traits (Falconer & Mackay, 1996).

Complex binary traits are usually analysed using a
threshold model, in which it is assumed that the observed
category is determined by the value of an underlying
unobservable continuous variable (Harville &Mee, 1984;
McCulloch, 1994). The underlying continuous variable,
called the liability, can be considered as a regular
quantitative trait which can be partitioned into genetic
and environmental components. The binary phenotype
and the continuous liability are linked through a ®xed but
unknown threshold (Wright, 1934). Existing quantitative
genetics theory developed for continuous traits holds

exactly for the continuous liability of binary traits.
Methods of QTL mapping for binary traits have been
well developed in line-crossing experiments (Hackett &
Weller, 1995; Visscher et al., 1996; Xu & Atchley, 1996;
Rebai, 1997;Xu et al., 1998) and four-way crosses (Rao&
Xu, 1998). The methods are primarily conducted in a
single cross or family. The statistical power of QTL
mapping with a single family strongly depends on the two
parents selected. If the two parents are ®xed for the same
allele at a putative QTL, the QTL is undetectable, no
matter how many o�spring are sampled from the family.
But on the other hand, even if a QTL is segregating in the
family and is detected, the estimated variance of the QTL
can not be extrapolated beyond the particular family. To
avoid a loss in statistical power as a result of homozygous
parents being selected and to increase the statistical
inference space of the estimated QTL parameters, one
needs to combine data frommultiple families.Methods to
handle normally distributed data from multiple families
in QTLmapping have already been developed. Typically,
these methods include maximum likelihood (Knott &
Haley, 1992; Grignola et al., 1996a,b), simple linear
regression (Knott et al., 1996) and weighted least squares
(Xu, 1998a). However, suchmethods are lacking for QTL
mapping of binary traits.*Correspondence. E-mail: xu@genetics.ucr.edu

Heredity 82 (1999) 668±676 Received 9 November 1998, accepted 9 February 1999

Ó 1999 The Genetical Society of Great Britain.668



In this paper, we develop a ®xed-model approach to
mapping quantitative trait loci for complex binary
traits from multiple families of outbred populations.
This approach is based on the threshold model, and
describes the liability by a single linear model with a
heterogeneous residual variance. We treat the genoty-
pic e�ects of the QTL for each parent as ®xed e�ects.
The Fisher-scoring algorithm is adopted here to
estimate these genetic parameters. The method auto-
matically generates an asymptotic variance±covariance
matrix for the estimated QTL e�ects, which are
eventually used for hypothesis tests and estimation
of QTL variances. The method is tested via analyses
of simulated data.

Statistical methods

Threshold model

Consider n independent full-sib families. Let yij (i� 1,
¼, n; j� 1, ¼, ni) represent an underlying continuous-
response variable associated with the jth individual in
the ith family. Denote the genotypes of a putative QTL
by Q S

i1Q S
i2 and Q d

i1Q
d
i2 for the two parents of the ith

family. The four possible genotypes in the progeny are
Q S

i1Q
d
i1; Q S

i1Q
d
i2; Q S

i2Q d
i1 and Q S

i2Q
d
i2. We denote the

values of the four genotypes by Gi11, Gi12, Gi21 and
Gi22, respectively. The underlying variable yij can be
treated as a usual quantitative character, which is
described by the following linear model:

yij � xTijb� zij1Gi11 � zij2Gi12 � zij3Gi21

� zij4Gi22 � eij; �1�

where b is a vector of unknown parameters (including
the overall mean, common environmental e�ects shared
by family members, polygenic e�ects and so on), which
relates yij via a known incidence vector xij, eij is the
residual error distributed as N(0, r2

e ), and zij� (zij1 zij2
zij3 zij4)

T are indicators of the four possible genotypes.
The variables zijk(k� 1, ¼, 4) are de®ned as follows:

zijk � 1 if the kth genotype is observed
0 otherwise.

n
In quantitative genetic analysis of complex binary

traits, yij itself is not observable. It has been postulated
that yij controls the binary expression of the trait
through a threshold model (Wright, 1934). The rela-
tionship between the underlying variable yij and the
binary response sij is assumed to be:

sij �
1 if yij > t

0 if yij � t;

8<: �2�

for some threshold value t. The threshold model is
overparameterized so that some constraints must be
superimposed. As usual, we set r2

e � 1 and t � 0
(Harville & Mee, 1984; Sorensen et al., 1995).
As a regular quantitative trait, the genotypic values of

the liability can be partitioned into additive and
dominance e�ects, i.e.

Gikl � as
ik � ad

il � dikl �k � 1; 2; l � 1; 2�; �3�

where as
i1 and as

i2are the e�ects of the two alleles in the
sire, ad

i1 and ad
i2are the e�ects of the two alleles in the

dam, and dikl is the dominance deviation. Unfortunate-
ly, as

ik ; ad
il and dikl are not estimable; some constraints

are required. If all the allelic and dominance e�ects are
appropriately scaled (standardized), the following re-
strictions can be applied

X2
k�1

as
ik �

X2
l�1

ad
il �

X2
k�1

dikl �
X2
l�1

dikl � 0 8i; k; l: �4�

Under these constraints, there are only three indepen-
dent estimable e�ects, which are as

i1, ad
i1 and di11. Denote

as
i � 2as

i1; a
d
i � 2ad

i1; di � di11, Gi� (Gi11 Gi12 Gi21 Gi22)
T

and ci � �as
i ad

i di�T, then Gi�Hci, where

H �

1
2

1
2 1

1
2

1
2 1

1
2

1
2 1

1
2

1
2 1

0BBB@
1CCCA:

Hence, model (1) can be re-expressed as:

yij � xTijb� wT
ijci � eij; �5�

where wT
ij � zTijH.

If the QTL is not at a marker locus, its genotype is
unobservable so that zij are missing. However, the
distribution of zij can be inferred from the genotypes of
linked markers. De®ne the probability of zijk� 1 condi-
tional on marker information by

pijk � Pr�zijk � 1jIM � for k � 1; 2; 3; 4:

These conditional probabilities can be calculated using a
multipoint method. Details of the general multipoint

MAPPING QTL FOR BINARY TRAITS 669

Ó The Genetical Society of Great Britain, Heredity, 82, 668±676.



method can be found in Kruglyak & Lander (1995) and
Rao & Xu (1998).

Given these conditional probabilities, the expectation
and covariance matrices of zij are

E�zijjIM � � �pij1 pij2 pij3 pij4�T

and

Var�zijjIM � �
pij1�1 pij1� pij1pij2 pij1pij3 pij1pij4

pij1pij2 pij2�1 pij2� pij2pij3 pij2pij4

pij1pij3 pij2pij3 pij3�1 pij3� pij3pij4

pij1pij4 pij2pij4 pij3pij4 pij4�1 pij4�

0BB@
1CCA:

Therefore, the conditional expectation and variance of
yij can be derived as follows:

E�yijjIM ; b; ci� � xTijb� E�wijjIM �Tci

� xTijb� E�zijjIM�THci � lij

and

Var�yijjIM ; b; ci� � cTi Var�wijjIM �ci � r2
e

� cTi H
TVar�zijjIM�Hci � 1 � Vij:

It should be noted that the conditional distribution of
yij is a mixture of four normal distributions. Neverthe-
less, when the QTL e�ects are small relative to re and
the marker information content is high, the conditional
distribution of yij can be close to a normal distribution.
Therefore, model (5) can be approximated by the
following heterogeneous residual variance model

yij � xTijb� E�wijjIM �Tci � eij; �6�

where eij � N(0, Vij).

Estimating genetic parameters

Under model (6), i.e. yij|(IM, b, ci) � N(lij, Vij), the
probability of sij is

Pij � Pr�sij � 1� � Pr�yij > 0jIM ; b; ci� � U
lij�����

Vij
p !

;

which leads to Pr(sij� 0)� 1 ) Pr(sij� 1)� 1 ) Pij,
where F(á) is the standardized normal distribution
function.

In the ®xed model, conditional on the genetic e�ects,
{sij} (i� 1, ¼, n; j� 1, ¼, ni) are mutually independent.
Therefore, we have the following log-likelihood function

L �
Xn

i�1

Xni

j�1
sijlogPij � �1 sij� log�1 Pij�
� �

: �7�

The maximum likelihood estimates of h � �bTcT1 . . . cTn �T
can be solved using any convenient algorithm. We found
that the Fisher-scoring algorithm is easy to derive and
also extremely fast; the algorithm1 is described as follows:

h�k�1� � h�k� � F 1 h�k�
� �

S h�k�
� �

; �8�

where k denotes an iteration index, S�h�=@L
@h ��ST

bS
T
1 . . .ST

n �T=� @L
@bT

@L
@cT

1

. . . @L
@cTn
�T is the score function,

and

F�h� � E S�h�S�h�T
h i

=
E @L

@b
@L
@bT

� �
E @L

@b
@L
@cTi

� �
E @L

@ci

@L
@bT

� �
E @L

@ci

@L
@cTi

� �0@ 1A
is the Fisher information matrix. The components of the
score vector and the Fisher information matrix are given
in the Appendix.

Each update of the Fisher-scoring algorithm involves
inverting F(h), which can be time consuming for a large
number of families or a high dimension of b. These can
be avoided by taking advantage of the partitioned
structure of F(h). Since the lower-right part of F(h) is
block diagonal, the Fisher-scoring algorithm can be
simpli®ed (see Appendix). After obtaining the maximum
likelihood estimates of the parameters b, as

i ; a
d
i and di,

the inverse of F�ĥ� has to be calculated. However, the
inverse of F(h) also has a simple form (see Appendix).

Given âs
i ; â

d
i and d̂i, one can estimate the cross-family

variances. If parents of the sampled families are
randomly sampled from the base population, the cross-
family variances provide approximate estimates of the
QTL segregation variances in the base population. The
additive and dominance variances in the base popula-
tion are r2

a � 1
4 Var as

i

�� Var ad
i �
�� �

and r2
d � Var di� �,

respectively.
The additive variance r2

a and dominance variance r2
d

can be estimated by:

r̂2
a �

1

4n

Xn

i�1

(
âs

i

�2
Var âs

i

�h i
� âd

i

�2
Var âd

i

�h i)
; �9�

and

r̂2
d �

1

n

Xn

i�1
d̂2i Var d̂i

� �h i
: �10�
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If Var�âs
i �; Var�âd

i � and Var�d̂i� are obtained exactly,
formulas (9) and (10) provide unbiased estimates of r2

a
and r2

d, respectively. However, Var�âs
i �; Var�âd

i � and
Var�d̂i� can only be estimated approximately by the
inverse of the Fisher information matrix (see the next
section), and thus the estimates are only asymptotically
unbiased.

Hypothesis testing

A useful property of the Fisher-scoring algorithm is that
the variance±covariance matrix of ĥ � �b̂T ĉT1 . . . ĉTn �T
can be approximated by the inverse of the Fisher
information matrix, i.e. Var�ĥ� � F�ĥ� 1. Because the

resulting estimates ĥ � �b̂T ĉT1 . . . ĉTn �T are maximum
likelihood estimates, they follow a multivariate normal
distribution if the family sizes ni are large enough, i.e.

ĥ _� N h;F ĥ
� � 1

� �
: �11�

As a consequence, the following test statistic, w, will
follow an approximate chi-squared distribution with m
degrees of freedom under the null hypothesis that
Ch� 0:

w � ĥTCT CVar�ĥ�CT
h i 1

Cĥ

� ĥTCT CF�ĥ� 1CT
h i 1

Cĥ; �12�

where m is the rank of matrix C.
The exact form of matrix C determines the type of

hypothesis test. To test the overall null hypothesis
H0 : as

i � ad
i � di � 0 8i, then C � 0 I3n� �. Theoreti-

cally, there are many other hypotheses to test. In this
study, we carry out only the overall test that no QTL at
the locus of interest is segregating.

Simulation studies

Design of simulations

Properties of the proposed method were investigated
numerically via Monte Carlo simulations. The following
properties were examined: the bias, the standard error of
the parameter estimates, and the statistical power of QTL
detection. We considered the following factors on the
performance of the mapping procedure: (i) the variance
explained by the QTL; (ii) the sampling strategy (number
of families vs. family size); and (iii) the trait incidence
(proportion of a�ected individuals). We simulated one
chromosome of length 100 cM with 11 codominant
markers evenly spaced along the chromosome. A single

QTL was simulated at 25 cM. The simulation was
repeated 100 times for each situation. The total number
of individuals was set at 750 in all simulations. The
standard error of the parameter estimates was calculated
from the standard deviation of the estimates among 100
replicates. The statistical power was determined by
counting the number of runs (over the 100 replicates)
that have test statistics greater than an empirical critical
value. The empirical critical value under each condition is
obtained by choosing the 95th and 99th percentile of the
highest test statistic over 1000 additional runs under the
null model (no QTL segregating).
Five equally frequent alleles were simulated for each

marker locus. This setting allows each parent to have a
20% chance of being homozygous at each marker locus.
In all situations, the residual error was assumed to be
normally distributed, with a variance set at r2

e � 1:0. The
broad-sense heritability of QTL, h2

q�� r2
g= �r2

g � r2
e � �

�r2
a � r2

d�=�r2
a � r2

d � r2
e ��, was examined at four levels:

0.4, 0.3, 0.2 and 0.1. Only a mixed mode of QTL
inheritance was considered, i.e. r2

a � r2
d. Therefore,

h2
q � 0:1 corresponds to r2

a � r2
d � 0:06; h2

q � 0:2 corre-
sponds to r2

a � r2
d� 0:125; h2

q � 0:3 corresponds to r2
a �

r2
d � 0:215, and h2

q � 0:4 corresponds to r2
a � r2

d � 0:33.
The sampling strategy was simulated at three levels:
5 ´ 150, 10 ´ 75 and 15 ´ 50 (number of families ´
family size). The trait incidence was set at 50% and 20%.
QTL allelic e�ects were considered to be normally

distributed with preassigned additive and dominance
variances. Each parent of a family was made of two
alleles: the ®rst allele was assigned a value sampled from
a standard normal distribution, and the second assigned
the negative value of the ®rst allele. The dominance
e�ect was the interaction e�ect between any two
sampled alleles, which was assigned a value sampled
from a N(0,1) distribution, independent of the allelic
e�ects. When o�spring were generated, their genetic
values at the QTL were re-scaled so that they had the
appropriate assigned variances. The liability of each
o�spring was the sum of its genetic value, the overall
mean l, and a residual error sampled from the N(0,1)
distribution. The observable binary phenotype was set
to 1 if the corresponding liability exceeded 0, and 0
otherwise. The overall mean of the liability, contained in
b, determines the proportion of the trait incidence. What
we did was to select the appropriate mean so that a
preassigned level of incidence was obtained.

Results of simulation

The empirical critical values at Type I error rates of 0.05
and 0.01 for situations with disease incidences of 50%
and 20% are given in Table 1. The trait incidence has a
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small e�ect on the empirical critical values. The empir-
ical critical values are slightly higher than the critical
values of the v2 distribution with corresponding degrees
of freedom (3 ´ n). As the number of families increases,
the empirical critical value increases dramatically. This
is expected because increasing the number of families
increases the number of parameters tested.

The estimates of QTL parameters (QTL position,
additive and dominance variances, and heritability) and
the empirical power are summarized in Tables 2, 3 and
4. The proposed method successfully locates the QTL
position and estimates the additive and dominance
variance components as well as the heritability with
negligible biases. However, the QTL heritability, the
sampling strategy and the trait incidence have strong
impacts on the performance of the mapping procedure.

The performance of the proposed method is strongly
a�ected by the trait incidence. In all cases, the estimates
of the QTL parameters are more accurate and the
statistical power is higher with the trait incidence of
50% than those with the trait incidence of 20% (see
Tables 2 and 3). Under the threshold model, some
information will be lost because of the translation from
the underlying liability into the observed binary pheno-
type. The trait incidence determines the amount of lost
information. The closer the trait incidence is to 50%, the
less information is lost. This explains why the proposed
method performs better in terms of the accuracy of
parametric estimation and statistical power when the
trait incidence is 50%.

Table 1 Empirical critical values for the signi®cance test
at a = 0.05 and a = 0.01, where a is the type I error rate

Trait Sampling
Empirical critical value

incidence strategy a = 0.05 a = 0.01

50% 5 ´ 150  31.2454 36.5079
10 ´ 75 49.1508 54.9654
15 ´ 50 67.9501 74.6404

20% 5 ´ 150 30.0567 34.8417
10 ´ 75 47.2046 51.2633
15 ´ 50 61.6487 66.3394

 Number of families ´ number of individuals per family.

Table 2 Estimates of QTL parameters and empirical power (a = 0.05, 0.01) under di�erent levels of heritability of the QTL
and di�erent sampling strategies when the trait incidence is 50%. Standard errors of the estimates, given in parentheses,
are calculated by the standard deviations among 100 replicated simulations. r2

a, r2d, r2g and h2q are additive, dominance,
genetic variances and heritability of the QTL, respectively

Power (%)

Heritability Sampling strategy cMA r2
a r2

d r2
g h2q a = 0.05 a = 0.01

0.10 Parametric value 25 0.06 0.06 0.12
5 ´ 150  24.91 0.0612 0.0719 0.1331 0.1149 92 87

(5.9561) (0.0377) (0.0537) (0.0618) (0.0469)
10 ´ 75 25.50 0.0676 0.0606 0.1282 0.1112 90 84

(8.7270) (0.0385) (0.0416) (0.0590) (0.0459)
15 ´ 50 26.03 0.0759 0.0657 0.1416 0.1217 83 65

(8.8831) (0.0420) (0.0446) (0.0611) (0.0454)

0.20 Parametric value 25 0.125 0.125 0.25
5 ´ 150 24.83 0.1275 0.1178 0.2452 0.1918 100 98

(4.2665) (0.0551) (0.0774) (0.0635) (0.0635)
10 ´ 75 24.98 0.1362 0.1211 0.2572 0.2003 100 98

(4.4563) (0.0684) (0.0672) (0.0937) (0.0584)
15 ´ 50 24.64 0.1409 0.1169 0.2579 0.2022 100 98

(4.9927) (0.0534) (0.0502) (0.0765) (0.0478)

0.30 Parametric value 25 0.215 0.215 0.43
5 ´ 150 24.41 0.1979 0.1727 0.3706 0.2628 100 100

(4.3649) (0.0953) (0.1219) (0.1437) (0.0736)
10 ´ 75 24.69 0.2029 0.1870 0.3899 0.2763 100 100

(5.007) (0.0971) (0.0865) (0.1074) (0.0593)
15 ´ 50 25.89 0.2138 0.1939 0.4077 0.2848 100 100

(5.0767) (0.0767) (0.0967) (0.1181) (0.0581)

 Number of families ´ number of individuals per family.
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The proportion of the phenotypic variance explained
by the QTL, i.e. the QTL heritability h2

q, has an e�ect on
the accuracy of the estimated parameters and the
statistical power (see Tables 2, 3 and 4). As expected, a
lower QTL heritability �h2

q � 0:1� can increase the
standard deviation of the estimated QTL position, and
decrease the statistical power. Higher heritability levels

tend to be associated with a slightly larger standard
deviation in the estimated variances and heritabilities,
because of the scaling e�ect, i.e. the standard deviation is
correlated to the mean. In the case of high QTL
heritability �h2q � 0:4�, the genetic variances and herita-
bility are underestimated, although the estimated QTL
position is accurate and the statistical power is high

Table 3 Estimates of QTL parameters and empirical power (a = 0.05, 0.01) under di�erent levels of heritability of the QTL
and di�erent sampling strategies when the trait incidence is 20%. Standard errors of the estimates, given in parentheses,
are calculated by the standard deviations among 100 replicated simulations. r2a, r2d, r2g and h2q are additive, dominance,
genetic variances and heritability of the QTL, respectively

Power (%)

Heritability Sampling strategy cMA r2
a r2

d r2
g h2

q a = 0.05 a = 0.01

0.10 Parametric value 25 0.06 0.06 0.12
5 ´ 150  27.03 0.0667 0.0711 0.1379 0.1169 87 72

(12.792) (0.0502) (0.0564) (0.0832) (0.0596)
10 ´ 75 27.72 0.0801 0.0645 0.1447 0.1225 70 56

(15.393) (0.0508) (0.0468) (0.0791) (0.0576)
15 ´ 50 28.43 0.1063 0.0857 0.1919 0.1556 62 47

(16.066) (0.0691) (0.0613) (0.1008) (0.0649)

0.20 Parametric value 25 0.125 0.125 0.25
5 ´ 150 25.45 0.1419 0.1348 0.2767 0.2059 96 92

(4.7426) (0.0880) (0.1214) (0.1579) (0.0894)
10 ´ 75 24.84 0.1443 0.1472 0.2915 0.2196 96 92

(5.8753) (0.0729) (0.0839) (0.1177) (0.0684)
15 ´ 50 26.03 0.1898 0.1654 0.3552 0.2481 85 75

(8.3090) (0.1299) (0.1120) (0.2018) (0.0975)

0.30 Parametric value 25 0.215 0.215 0.43
5 ´ 150 24.91 0.1964 0.1912 0.3877 0.2717 100 98

(4.5662) (0.1147) (0.1355) (0.1453) (0.0749)
10 ´ 75 26.16 0.2362 0.2069 0.4432 0.2971 99 97

(4.7667) (0.1148) (0.1306) (0.1744) (0.0842)
15 ´ 50 25.61 0.2895 0.2145 0.5040 0.3245 99 99

(8.2998) (0.1379) (0.1175) (0.1957) (0.0835)

 Number of families ´ number of individuals per family.

Table 4 Estimates of QTL parameters and empirical power (a = 0.05, 0.01) under di�erent sampling strategies when the
QTL heritability h2q is 0.4 and the trait incidence is 50%. Standard errors of the estimates, given in parentheses, are calculated
by the standard deviations among 100 replicated simulations. Parametric values not listed in the table are: QTL position
(cMA) = 25 cMM, additive variance r2

a = 0.33, dominance variance r2d = 0.33 and genetic variance r2g = 0.66

Power (100%)

Sampling strategy cMA r2
a r2

d r2
g h2q a = 0.05 a = 0.01

5 ´ 150  24.95 0.2797 0.2524 0.5321 0.3385 100 100
(4.4298) (0.1381) (0.1502) (0.1802) (0.0762)

10 ´ 75 24.39 0.2783 0.2655 0.5438 0.3456 100 100
(4.7769) (0.1012) (0.1367) (0.1637) (0.0644)

15 ´ 50 24.84 0.2843 0.2484 0.5326 0.3416 100 100
(5.2051) (0.1009) (0.1155) (0.1497) (0.0618)

 Number of families ´ number of individuals per family.
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(Table 4). This is expected because the mixture of normal
distributions can not be approximated by a single normal
distribution when the QTL heritability is high.

The sampling strategy also has an impact on the
estimation of the QTL position and the statistical power
(see Tables 2, 3 and 4). When the number of families
increases, the standard deviation of the estimated QTL
position increases. In the case of low QTL heritability
�h2

q � 0:1�, the statistical power decreases as the number
of families increases. When the power is already very
high (e.g. h2q > 0:1), the e�ect of the sampling strategy is
expected to be negligible. However, the sampling strat-
egy has a small e�ect on the precision of the QTL
variances and estimated heritabilities. Overall, QTL
mapping performs well with a few large families.

Discussion

We have developed a general framework of QTL
mapping for complex binary traits by combining data
from multiple families. Instead of analysing each family
separately, this method carries out a joint statistical
inference for multiple families. The link among families
is re¯ected by the common ®xed e�ect vector b (see
models 5 and 6), which includes the overall mean l and
some common genetic and nongenetic factors, e.g.
common environmental e�ects shared by these families
and maternal e�ects. Because of these common e�ects,
the estimates and tests of genetic parameters in di�erent
families are correlated. Therefore, a joint test for
multiple families is more powerful than a test consider-
ing each family separately (Rebai2 & Go�net, 1993). In
addition, there are other reasons to justify the use of the
proposed consensus method. Like most human diseases,
complex binary traits in animal and plant populations
undoubtedly have a complex genetic basis. Some QTLs
controlling complex binary traits may be homozygous in
any single individual and di�erent individuals may be
heterozygous for di�erent QTLs. Ideally, several fami-
lies should be selected and analysed jointly. As a result
of using multiple families, the method has a wider
statistical inference space than using a single family.
Theoretically, the variance attributable to the QTL is
better estimated with a large number of families.
However, the number of parameters dramatically in-
creases as the number of families sampled increases,
which undoubtedly reduces the statistical e�ciency of
the proposed method. Therefore, with a ®xed number of
individuals, there is an optimal allocation between the
number of families and the number of individuals per
family where QTL mapping reaches its maximum power
and minimum estimation error. Limited investigations
have shown that a mating with several parents (5±10)
should give a good sample of variance and allow the

detection of QTL with reasonable power (Muranty,
1996; Xu, 1998a).

A typical problem in QTL mapping comes from
missing QTL genotypes. In QTL mapping using outbred
line crosses, when the putative QTL is not at a marker,
the liability is actually a mixture of four normal
distributions. Theoretically, the optimal treatment of
the unobservable genotype is the mixture model max-
imum likelihood method, which uses all information
contained in the data (Lander & Botstein, 1989; Zeng,
1994). The heterogeneous residual variance model pro-
posed here uses a single distribution to approximate the
four distributions, assuming that the residual is normal-
ly distributed. This approximation is feasible only when
the QTL e�ects are small relative to the residual
variance. Some comparisons between the heterogeneous
residual variance model and the mixture model have
been made in QTL mapping, showing that the two
methods are virtually identical for normally distributed
traits, even when the QTL e�ects are large (Xu, 1998b).
Our simulations show that the proposed method
performs well when the QTL heritability is not overly
high. In the analysis of real data, the e�ect of any
individual QTL being tested is usually small for most
polygenic traits, which makes the proposed method
valid for most situations. There are some advantages of
the heterogeneous residual variance model over the
mixture model. First, a simple Fisher-scoring algorithm
is available for the heterogeneous residual variance
model, which provides, as a by-product, an estimate of
the variance±covariance matrix of the estimated param-
eters. Therefore, it is straightforward to conduct hy-
pothesis tests. The Fisher-scoring method is di�cult to
derive for the mixture model. As a result, computing the
variance±covariance matrix of the estimated parameters
is di�cult with the mixture model. Secondly, the
heterogeneous residual variance model implemented
via the Fisher-scoring algorithm is fast, which allows a
multiple sampling technique, e.g. the permutation test,
to be used more conveniently.

The results presented in this study are based on
known linkage phases. Therefore, implementation of
this method requires the knowledge of marker linkage
phases in the parents. There are several ways to deduce
the linkage phase in outbred pedigrees (e.g. Maliepaard
et al., 1997).

The proposed method is a ®xed-model approach
because the genetic e�ects are treated as ®xed. As
observed in the simulation studies, the method is
e�cient when there is a small number of families with
large family sizes. However, as the number of families
increases, the substantial number of parameters to be
estimated often generates some statistical problems, in
particular when the family sizes are small. The random
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model approach, on the other hand, estimates only a few
parameters, because only the variances are estimated
and tested. With the random model approach, statistical
analysis can be carried out even when the family sizes
are small. The random model approach, though, is as-
of-yet undeveloped for complex binary traits, and as
such deserves further investigation.
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Appendix

The components of the score vector
and the Fisher information matrix

The components of the score vector and the Fisher
information matrix are given by
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where u��� is the probability density of the standardized
normal distribution.

A simple algorithm for estimating parameters

Denote Fbb � E @L
@b

@L
@bT

� �
; Fbi � FT

ib � E @L
@b

@L
@cTi

� �
and

Fii � E @L
@ci
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� �
. The Fisher information matrix is par-

titioned into
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..

. ..
. ..

. . .
. ..

.
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0BBBBB@

1CCCCCA:

.

Since the lower-right part of F�h� is block diagonal,
algorithm (8) can be re-expressed more simply as

F
�k�
bb Db�k� �

Xn

i�1
F
�k�
bi Dc�k�i � S

�k�
b ;

F
�k�
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�k�
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i ; i � 1; . . . ; n;

where Db�k� � b�k�1� b�k� and Dc�k�i � c�k�1�i c�k�i :

After some transformations, the following algorithm is
obtained, where each iteration step implies working o�
the data twice to obtain ®rst the corrections (Fahrmeir
& Tutz, 1994):
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A simple method for calculating F�h� 1

Since the lower-right part of F�h� is block diagonal,
F�h� 1 is obtained using standard formulae for inverting
partitioned matrices (Fahrmeir & Tutz, 1994). The result
is summarised as follows:
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