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The effective population size is the parameter that summarizes the magnitude of genetic drift
and increase in inbreeding occurring in a population. In this paper, developments in the
prediction equations for the effective size of populations subdivided under various models are
reviewed, and extensions are made in several cases. Derivations are shown for some simple
models, and the relationships among these equations and with those for a single unsubdivided
population are discussed. The effect of population subdivision on neutral genetic variation and
its implications are explained.

Keywords: conservation, effective size, genetic drift, heterozygosity, inbreeding, migration.

Contents

1 Introduction
2 Population structure and genetic differentiation
3 Effective size

3.1 Equal contribution from subpopulations
3.1.1 Island model
3.1.2 Stepping stone model
3.1.3 The neighbourhood model
3.1.4 The general model with an equal contribu-
tion from subpopulations

3.2 Variable contributions from subpopulations
3.2.1 Effective size for monoecious species
3.2.2 Constant and equal subpopulation size
3.2.3 Extinction and recolonization

3.3 The pattern of inheritance
3.3.1 Dioecious species
3.3.2 Sex-linked loci
3.3.3 Haploid species
3.3.4 Non-nuclear gene inheritance

4 The effects and implications of population sub-
division
4.1 The effects
4.2 Implications

5 Some other considerations of subdivision
5.1 Complete subdivision
5.2 More than two levels of subdivision
5.3 Realization of the asymptotic effective size

References

1 Introduction

Effective population size is a key parameter in popu-
lation and quantitative genetics. It has important
applications in evolution theory, domestic animal
and plant breeding and conservation biology. As a
measure of the strength of the stochastic process in
a finite population, effective size determines the rate
of decay of neutral genetic variation. It also affects
the behaviour of genes under selection and other
systematic forces, and thus influences the variance of
selection response (Hill, 1985), the selection limits
(Robertson, 1960) and the short- and long-term
survival of populations under conservation (Lande &
Barrowclough, 1987; Lynch et al., 1995).

The concept of effective size was introduced by
Wright (1931) and developed subsequently by Crow
and colleagues (see Crow & Kimura, 1970, pp.
345–364). They distinguished between a variance
effective size, which predicts the variance of change
in gene frequency resulting from one generation of
genetic sampling, and an inbreeding effective size,
which predicts the rate of decrease in heterozygosity.
In simpler cases, the two effective sizes are the same
but, for more complex situations, it is necessary to
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make a distinction (Kimura & Crow, 1963a). Since
this pioneer work, there has been much progress on
developing equations to predict this important
parameter. A long list of factors, such as sex ratio,
mating system, variance in reproductive success,
fluctuation of population size over generations,
selection, overlapping generations and pattern of
inheritance (e.g. haploid, polyploid, sex-linked) have
been identified, and their effects on effective size
quantified. These developments were reviewed by
Caballero (1994). However, an important factor, the
subdivision of populations, was only included briefly
in his review.

The importance of population subdivision is
reflected in both its substantial impact on effective
size (as shown below) and its ubiquity among organ-
isms. Many species naturally form subpopulations in
the form of herds, flocks, schools, colonies or other
types of aggregations because of intrinsic factors,
such as behavioural segregation. In addition, natural
habitats are typically patchy, with favourable areas
interspersed among unfavourable areas. Even in the
ideal case of a uniformly favourable habitat, the
population is still subdivided to some extent if the
habitat is large, because the distance of individual
migration is usually much smaller than the entire
range of the habitat; individuals are more likely to
reproduce locally, leading to the so-called ‘isolation
by distance’ (Wright, 1943). Now, more and more
habitats are fragmented by human activities, and
many organisms live in more or less isolated islands.

Recognizing the prevalence of population
subdivision and its effects on genetic variation,
several authors have developed prediction equations
for effective size of subdivided populations (also
called metapopulations) in recent years. In this
paper, we will review these equations and their
inter-relations and implications for conservation
biology, evolutionary theory and breeding applica-
tions. Derivations and extensions to previous
developments are made for some cases. Particular
attention is paid to keeping the symbols, parameters
and equations for subdivided populations consistent
with those reviewed previously (Caballero, 1994) for
a single unsubdivided population

2 Population structure and genetic
differentiation

The effective size of a metapopulation is the size of
a Wright–Fisher idealized population that would
give rise to the variance of change in gene frequency
or the rate of inbreeding observed in the actually
subdivided population under consideration. An

idealized population is a monoecious population
with constant size over discrete generations, random
mating including selfing in random amounts, an
equal probability of contributing gametes to the next
generation from different parents and with respect
to autosomal loci without mutation and selection
(Fisher, 1930; Wright, 1931; see Caballero, 1994).
The main violation of the above ideal situation in a
subdivided population is nonrandom mating; mating
is more likely to occur within subpopulations rather
than among subpopulations. This kind of nonran-
dom mating will inevitably lead to genetic differenti-
ation (the difference in gene frequency) among
subpopulations, which is reflected as the relative
difference between the average observed heterozy-
gosity over subpopulations and the theoretical
heterozygosity assuming no subdivision (completely
random mating). Genetic differentiation may result
from natural selection favouring different genotypes
in different subpopulations and may also result from
random genetic drift acting independently within
local demes.

Migration, the gene flow among subpopulations,
tends to impede genetic differentiation. As a homo-
genizing factor, it offsets the differentiating forces so
that the population may reach an equilibrium. With
one generation of complete migration (random
mating in the entire population), the differentiation
among subpopulations disappears completely. With
no migration, the subpopulations differentiate
continuously until alleles become either lost or fixed
in different subpopulations. We are generally inter-
ested in incomplete subdivision in which genetic
differentiation among subpopulations is counter-
balanced by a certain degree of gene flow.

As another homogenizing force, mutation has
little effect on genetic differentiation compared with
migration, because it occurs at a rate of the order of
10µ5 or less. Throughout the paper, we concentrate
on selectively neutral variation and consider genetic
drift as the sole differentiating force and migration
among subpopulations as the sole homogenizing
force.

The interaction between genetic drift and migra-
tion, which determines the equilibrium differentia-
tion, the steady-state rate of decay of genetic
variation and effective size, is largely influenced by
the hierarchy of population structure. A hierarchical
structure means that individuals can be grouped into
progressively inclusive (nested) levels such as
sublines, lines and the whole population. The actual
geographical structure of a natural population may
be quite complicated. For mathematical tractability,
some simplified (idealized) population structure
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models, such as the island model, stepping stone
model and neighbourhood model, have been
proposed. Results from these models are, however,
still pertinent to the real world and have implica-
tions for evolutionary theory, plant and animal
breeding and conservation biology.

Given the geographical structure and demo-
graphic properties of a population, its genetic differ-
entiation will eventually reach an equilibrium after a
sufficiently long time. Wright’s F-statistics (Wright,
1951) are very useful in describing the genetic struc-
ture (or the partition of genetic variation) of a meta-
population irrespective of its geographical structure,
the degree of isolation among subdivisions and
without getting into details such as gene and geno-
typic frequencies. As will be shown below, the
F-statistics can also be used to derive the effective
size of metapopulations, making the expressions
more concise and meaningful. F-statistics can be
predicted using information on the geographical
structure and demographic properties of the popula-
tion and can also be estimated using gene and geno-
typic frequency data on allozyme and DNA
polymorphisms (see Hartl & Clark, 1997).

3 Effective size

The variance and inbreeding effective sizes are not
always the same in a metapopulation. However, if
the total metapopulation is not completely
subdivided, and its size and structure are constant
over generations, then, after a sufficient number of
generations, the rate of inbreeding and the variance
of change in gene frequency will gradually reach
their respective asymptotic values, which correspond
to a unique effective size called eigenvalue effective
size (Ewens, 1982) or asymptotic effective size
(Chesser et al., 1993; Wang, 1997a,b). The long-term
effect of drift and inbreeding in a metapopulation
on neutral or weakly selected alleles can be
predicted by the asymptotic effective size. In this
part, we are concerned only with the asymptotic
effective size, which will be called effective size (Ne)
for simplicity hereafter.

3.1 Equal contribution from subpopulations

Most prediction equations for the effective size of a
subdivided population assume, explicitly or impli-
citly, that all subpopulations contribute equally to
the next generation and have an equal and constant
size over generations. These assumptions simplify
the prediction considerably, although they may not
be true in natural populations.

3.1.1 Island model Wright (1943) considered a
population subdivided into n subpopulations, each
being an idealized population of size N except for
receiving a proportion m of immigrants taken
randomly from the entire population per generation.
This is the so-called island model. He derived, using
the approach of the variance in gene frequency, an
expression for effective size

Ne = nN C1+
(nµ1)2

4Nmn2 D , (1)

which was also derived by Nei & Takahata (1993)
using Slatkin’s (1991) formula for the coalescence
time of two randomly chosen homologous genes.
Equation (1) indicates that subdivision always results
in an increase in Ne with this model. When Nm is
large, Ne2nN, as expected for a panmictic popula-
tion; but Ne can be much greater than the meta-
population size (nN) when Nm is small. If nu1, we
have

Ne = nN+n/(4m) (2)

approximately. When migration is low (4Nmi1),
each subpopulation acts as a single individual, and
Ne2n/(4m) is mainly determined by the number of
subpopulations and migration rate and can be much
larger than the census size nN. However, a strong
assumption made in deriving eqns (1) and (2) is that
different subpopulations contribute equally to the
next generation. As will be shown below, violation of
this assumption may lead to the opposite.

Natural populations are seldom so ideal; there
may be nonrandom mating, non-Poisson variance in
reproductive success and other complications within
subpopulations as reviewed by Caballero (1994).
Wang (1997a) considered a monoecious meta-
population with partial selfing at rate b, an arbitrary
distribution of family size (with variance S 2

k) and
both pollen and seed migration with rates dp and ds,
respectively. The resulting equation for Ne is compli-
cated, but a good approximation can be obtained
from eqn (2) by replacing N with the effective size of
a subpopulation (NeS), i.e.

Ne = nNeS+n/(4m), (3)

where the total migration rate is m = 1
2 dp+ds. The

effective size of a subpopulation is

NeS =
4N

2(1µFIS)+S2
k (1+FIS)

, (4)

where
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FIS =
b

2µb
(5)

(see Caballero, 1994). Equation (3) shows that any
factor that acts to increase (or decrease) the effect-
ive size of subpopulations will also increase (or
decrease) the effective size of the metapopulation.
However, this is important only when migration is
high (4NeS mu1).

For a subdivided dioecious population with
different numbers of males (Nm) and females (Nf)
within subpopulations and different migration rates
of males (dm) and females (df), predictions of Ne

have been made by Chesser and colleagues for equal
family size and Poisson distribution of family size
(Chesser et al., 1993) and by Wang (1997b) for an
arbitrary distribution of family size. To a good
approximation, Wang’s eqn (28) also reduces to
eqn (3) above with m = 1

2(dm+df) and NeS = 16/
(Pm,mm+2Pm,mf+Pm,ff+Pf,mm+2Pf,mf+Pf,ff) (Nagylaki,
1995), where Pu,vw is the probability that two indi-
viduals of sexes v and w taken at random from the
same subpopulation before migration come from the
same parent of sex u (u, v, w = m for males, f for
females). Pu,vw is given by

Pu,vv =
1

Nvµ1 CA
Nu

NvB s 2
uv+

Nv

Nu

µ1D
and

Pu,mf = A
Nu

Nm NfB s u,mf+
1

Nu

,

where s 2
uv denotes the variance of the number of

offspring of sex v from a parent of sex u, and s u,mf

represents the covariance of the numbers of male
and female offspring from a parent of sex u.

Equation (3) is only an approximate prediction.
From exact solutions of recurrence equations for the
probability of identity by descent (PIBD) or more
accurate equations for Ne, it has been shown that
male migration is more important than female
migration when NmsNf (Wang, 1997b). This is
because a male immigrant is expected to contribute
a higher proportion of genes to the next generation
than a female migrant when NmsNf. However, the
difference between the effects of male and female
migration is small.

3.1.2 Stepping stone model In natural populations,
individuals are often distributed more or less discon-
tinuously to form colonies (subpopulations), and
individuals or gametes are mainly exchanged

between adjacent or nearby colonies. Kimura (1953)
first proposed a model, called the ‘stepping stone
model’, to analyse such a structure. Based on the
spatial arrangements of the subpopulations, the
model is classified into one, two, three or higher
dimensions. Maruyama (1970) considered a monoe-
cious population subdivided into an even number of
n colonies, each of size N and arranged in a circular
stepping stone model. Migration between adjacent
colonies occurs at a rate of 1

2 m in each generation
(m80). By two different methods, Maruyama (1970)
derived that

Ne2
n2

2mp2
, if 2Nmsn/p2, (6)

and

Ne2nN, if 2Nman/p2. (7)

These equations show that, when the absolute
number of migrant gametes from (or to) each
subpopulation (2Nm) is small, Ne is approximately
proportional to n2, i.e. the square of the number of
subpopulations, as pointed out by Kimura & Crow
(1963b). On the contrary, when 2Nm is large, there
is little differentiation among subpopulations, and
the metapopulation behaves as a large panmictic
population. The equality 2Nm = n/p2 represents a
turning point at which one of the equations becomes
valid and the other one breaks down. At the turning
point, however, both approximate equations give the
same and the least level of accuracy, underpredicting
Ne by a factor of 2 (Maruyama, 1970).

Comparing eqns (6) and (7) with eqn (2), we see
that the stepping stone model is, in fact, similar to
the island model, in that a turning point determined
by the effective number of migrant gametes (2NeSm)
and the number or squared number of subpopula-
tions divides the population into two classes, effect-
ively panmictic and subdivided populations. Extra-
polating the expression of effective size for the
stepping stone model from that for the island model,
we obtain

Ne = nN+
n2

2mp2
. (8)

Although eqn (8) is not derived analytically, it
provides better predictions than eqns (6) and (7)
across the whole range of all parameters (N, n and
m), the greatest improvement occurring at the
turning point, as expected. This can be verified by
the numerical examples of Maruyama (1970; tables 1
and 3).
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Prediction equations for Ne for other stepping
stone models are not available, but the relation
between Ne and n, N and m should, in principle, be
similar to that shown above. When subpopulations
are not ideal, NeS should be used instead of N in
eqn (8).

3.1.3 The neighbourhood model The island and
stepping stone models assume discrete subpopula-
tions, i.e. there is an area between colonies that is
not inhabited. A natural population may have a
continuous distribution of its individuals across the
habitat, but it is not necessarily a random mating
unit, because the distance of individual migration is
usually much smaller than the entire distribution
range of the population. Wright (1943, 1946)
considered a model in which a population is distri-
buted uniformly over a large territory, but parents of
any given individual are drawn at random from a
small surrounding region. The individuals in this
region in a continuum constitute a random mating
unit, called a ‘neighbourhood’ (Wright, 1946). The
neighbourhood size is determined by the migration
distance (or rather the variance in migration
distance) and population density (number of indi-
viduals per unit area). For a diploid, monoecious
population distributed uniformly along a circular
(one-dimensional) habitat, Maruyama (1971)
derived that

Ne2
NTL

p2Ds2
, if Ds2sL/p2, (9)

and

Ne2NT, if Ds2aL/p2, (10)

where s2 is the variance of dispersion distance, D is
the population density, L is the length of habitat and
NT = LD is the metapopulation size. When the
population is distributed on a linear habitat with two
ends, eqns (9) and (10) and the conditional inequal-
ities hold if L is replaced by 2L (Maruyama, 1971).
Therefore, when Ds 2 is small, the effective size of a
linear population is twice that of a circular popula-
tion. When Ds 2 is large, however, both populations
behave as panmictic units and have the same effect-
ive size, NT. The turning point that determines
roughly whether the population behaves like a
panmictic one or not depends on both Ds 2 (a local
property) and L (a property of the metapopulation
or habitat). This property is similar to that of the
circular stepping stone model (see eqns 6 and 7).
With the same arguments given for the stepping
stone model, we immediately see that the equations

before and after the turning point could be
combined to give more general predictions,

Ne = NT A1+
L

p2Ds2B , (11)

for a circular structured population, or the same
expression replacing L with 2L for a linear struc-
tured population.

For a population distributed uniformly and
continuously on a habitat of a torus-like surface
(two-dimensional) with size LÅL and density D,
numerical examples indicated that

Ne2
NT

Ds2
, if Ds2s1 (12)

and

Ne2NT, if Ds2a1 (13)

(Maruyama, 1972). Comparing eqn (9) with
eqn (12), we note that, for a given size NT and a
given small Ds2, one-dimensional structures result in
a much larger Ne than two-dimensional structures.
When the habitat occupied by a population is rec-
tangular, eqns (12) and (13) and the conditional
inequalities are valid if Ds2 is replaced by 1

2 Ds2

(Maruyama, 1972). Therefore, for small values of
Ds2, a rectangular structure results in a larger Ne

than the torus-like structure. By analogy with
eqns (8) or (11), a combination of eqns (12) and
(13) gives more general and accurate predictions.

In contrast to one-dimensional populations
(eqns 9 and 10), the turning point for
two-dimensional populations depends only on Ds2,
independently of the habitat size. In this respect,
two-dimensional, continuously distributed popula-
tions are similar to populations in the island model
(see eqn 2).

3.1.4 The general model with an equal contribution
from subpopulations In the above, different
geographical structures of a metapopulation lead to
different prediction equations for effective size. The
parameters in these equations, such as migration
rate and variance in dispersion distance, are difficult
to estimate in practice (Slatkin, 1985). Moreover, if
the number of dimensions in the stepping stone
model and neighbourhood model exceeds two, it is
also difficult to derive an analytical expression for
effective size. Furthermore, the structure of natural
populations may be much more complicated than
that described by the three models. Therefore, a
general expression for effective size that is indepen-
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dent of the geographical structure of the population
will be very useful.

F-statistics describe the genetic architecture of a
subdivided population in any geographical structure,
and they can be estimated using protein or DNA
polymorphism data. If effective size can be
expressed in terms of F-statistics, there will be no
need to consider the geographical structure of the
population and to estimate m and s2. Here, we
derive such an equation for effective size, according
to the approach of the variance in gene frequency
(although a similar derivation can be made by the
inbreeding approach).

Assume that a population is subdivided into n
subpopulations with the same census size N and
effective size NeS. Let qi and qpi be the frequencies of
a given allele at an arbitrary neutral locus in the ith
subpopulation in generations t and t+1, respectively.
The change in gene frequency caused by genetic
drift in the ith subpopulation is Dqi = qpiµqi. The
variance of change in gene frequency can be derived
using a procedure shown in Caballero (1994) as
VDqi = qi(1µqi)/(2NeS). The mean change in gene
frequency for the metapopulation is

Dq = 1
n +

n

i=1

Dqi.

Ignoring the second-order terms introduced by
correlations among the Dqi because of the finite
number of subpopulations, we obtain

VDq =
1

n2
+
n

i=1

[VDqi
] =

+
n

i=1
qi(1µqi)

2n2NeS

. (14)

In the subdivided population, the average heterozy-
gosity is

2
n +

n

i=1

qi(1µqi) = 2(1µFST)q̄(1µq̄)

(Hartl & Clark, 1997), where

q̄ = 1
n +

n

i=1

qi.

Inserting the relation into eqn (14) and equating VDq

to q̄(1µq̄)/(2Ne) by definition, we obtain

Ne =
nNeS

1µFST

. (15)

Equation (15) is essentially the same as that
derived by Wright (1943) except for NeS instead of

N. Therefore, the effective size of a subdivided
population turns out to be very simple in terms of
F-statistics and effective subpopulation size. All the
complications within a subpopulation (such as
nonrandom mating, variance in family size, etc.) can
be taken into account by using the effective
subpopulation size, which has been reviewed by
Caballero (1994). For a monoecious population with
partial selfing rate b, for example, NeS is given by
eqns (4) and (5), and the effective size of the meta-
population is

Ne =
4nN

(1µFST)[2(1µFIS)+S 2
k(1+FIS)]

. (16)

3.2 Variable contributions from subpopulations

Most previous analyses on metapopulations have
assumed that all subpopulations contribute an equal
number of offspring to the next generation and have
the same constant size over generations. Natural
populations are seldom so ideal, and all of their
demographic parameters may change in space and
time. In the extreme case, a particular subpopulation
may become extinct and be replaced by migrants
from other subpopulations. A general model has
been proposed and analysed by Whitlock & Barton
(1997) recently. They found that, when subpopula-
tions are allowed to contribute differentially,
subdivision may lead to a great decrease in Ne. This
was also found by Gilpin (1991) and Hedrick &
Gilpin (1997) using simulation studies incorporating
both realistic features of population ecology (e.g.
extinction and recolonization) and population
genetics.

3.2.1 Effective size of monoecious species Whitlock
& Barton (1997) considered a monoecious popula-
tion subdivided into n subpopulations, whose sizes
may differ and change over generations. Each
subpopulation was assumed to be an ideal Wright–
Fisher population but, as shown below, their model
can easily be extended to non-ideal situations.

Consider a population subdivided into n sub-
populations. In each discrete generation, reproduc-
tion is followed by migration. At generation t, the ith
subpopulation has Ni individuals and contributes a
total number of Npi progeny to the next generation.
Therefore, the fitness of the ith subpopulation at
generation t is wi = Npi/Ni, with

+
n

i=1

wi = n
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(the metapopulation size is constant). Let Fij be the
probability of identity by descent (PIBD) of two
alleles chosen at random from subpopulations i and
j, respectively, at generation t. After reproduction
but before migration, the average PIBD for alleles
taken from the ith subpopulation is increased to

F pii =
1

2NeSi

+A1µ
1

2NeSiB Fii, (17)

where NeSi is the effective size of subpopulation i.
The PIBD for alleles from different subpopulations
remains the same,

Fpij = Fij. (18)

The overall average PIBD for alleles taken at
random from the entire metapopulation is

F̄ = +
i

+
j

Ni Nj Fij

n2N̄ 2
(19)

for generation t and

F̄ p = +
i

+
j

Npi Npj Fpij
n2N̄ 2

(20)

for generation t+1, where N̄ is the mean number of
individuals per subpopulation. Inserting eqns (17)
and (18) into eqn (20) yields

F̄ = +
i

w 2
i N 2

i (1µFii)

2n2N̄ 2NeSi

++
i

+
j

wi wj Ni Nj Fij

n2N̄ 2
. (21)

Now, migration changes the PIBD for alleles
within and among subpopulations, but the overall
mean, F̄p, remains the same. Therefore, it is needless
to consider migration as far as F̄p is concerned.
Noting that the overall mean PIBD for alleles in
generation t can be expressed as

F̄ = +
i

+
j

Ni Nj F̄

n2 N̄ 2
,

we obtain the rate of change in the overall mean
PIBD from eqns (19) and (21),

F̄ pµF̄

1µF̄
= +

i

w2
i N 2

i (1µFST,ii)

2n2N̄ 2NeSi

++
i

+
j

wi wj Ni Nj FST,ij

n2N̄ 2
, (22)

where FST,ij = (FijµF̄)/(1µF̄) is a generalization of
Wright’s F-statistic, and FST,ii is the FST for the ith
subpopulation. From the definition of F̄, it is easy to
see that

+
i

+
j

Ni Nj FST,ij = 0.

Equating eqn (22) to 1/2Ne yields the asymptotic
effective size of a metapopulation

Ne =
nN̄

+
i

w 2
i N 2

i (1µFST,ii)

nN̄NeSi

+2+
i

+
j

wi wj Ni Nj FST,ij

nN̄

. (23)

When each subpopulation is an ideal Wright–
Fisher population, NeSi = Ni, and eqn (23) reduces to
Whitlock & Barton’s eqn (9). In principle, all the
parameters in eqn (23) are measurable or predict-
able in a single generation. The FST,ij could be esti-
mated from the same genetic data as FST, using an
analysis of covariance. The reproductive values (wi)
are for a single generation’s transition (for more
details, see Whitlock & Barton, 1997).

In the derivation of eqn (23), no assumption was
made about the geographical structure or migration
pattern of the population. The variation in fitness
among subpopulations may come from individual
variation of contributions and temporary or perma-
nent quality differences among the patches of a
habitat occupied by different subpopulations. There-
fore, eqn (23) can be used to estimate Ne for a
natural population if enough demographic data and
genetic data are available for a single generation.
Two special and important cases of eqn (23) are
discussed next.

3.2.2 Constant and equal subpopulation size Con-
sider the case that each subpopulation has the same
constant size (Ni = N̄ = N) but contributes unequally
to the next generation via migration. If wi wj is not
correlated with FST,ij, we have FST,ij = µFST/(nµ1) for
i8j (Whitlock & Barton, 1997) where

FST = 1
n +

i

FST,ii.

The effective subpopulation size is

NeSi =
2Ni wi

[S2
ki/(2wi)+2wi](1+FIS,i)µ(1+3FIS,i)

(Wang, 1996), where S 2
ki is the variance in the

number of gametes contributed per individual in
subpopulation i. Inserting the above relations into
eqn (23) yields

Ne =
nN

1
4(1µFST)[(1+FIS)(S2

k+4V)+
,

2(1µFIS)]+2NVFST n/(nµ1) (24)

where V is the variance in fitness among subpopula-
tions (variance of wi),

218 J. WANG & A. CABALLERO

© The Genetical Society of Great Britain, Heredity, 82, 212–226.



FIS = 1
n +

i

FIS,i

and

S 2
k = 1

n +
i

S2
ki.

With random mating and Poisson distribution of
family size within subpopulations, we have FIS = 0
and

S 2
k = 1

n +
i

2wi = 2,

eqn (24) reduces to Whitlock & Barton’s equation

Ne =
nN

(1µFST)(1+V)+2NVFST n/(nµ1)
. (25)

From eqn (25), it can be seen that, compared with
an unsubdivided population of the same size nN,
subdivision may increase or decrease Ne, depending
simply on the variance in fitness among subpopula-
tions. If subpopulations contribute equally to the
next generation (V = 0), eqn (25) reduces to
eqn (15) of the previous section with N replacing
NeS, and Ne always being increased by subdivision.
On the contrary, if VE1/(2Nµ1) approximately,
subdivision will result in a decrease in Ne. A variance
of V21/(2Nµ1) refers to the situation in which
there are no restrictions to the reproductive output
of each subpopulation and no quality differences
(temporary or permanent) among the patches of a
habitat occupied by the metapopulation, and the
distribution of reproductive success of individuals is
Poisson.

Whereas the direction of the effect of subdivision
on Ne depends on V, the magnitude of the effect
relies on the genetic differentiation, FST. If FSTh0,
NehnN/(1+V)2nN because V is of the order
1/(2N); if FSTh1, eqn (25) reduces to
Ne = (nµ1)/(2V), which is equivalent to the Ne of an
unsubdivided haploid population (Caballero, 1994,
eqn 27) with the number of subpopulations taking
the place of the number of individuals and the vari-
ance in the number of gametes being 2V instead of
V. Because with FST = 1, each subpopulation is
completely homozygous for a particular allele at a
locus, it behaves as a haploid individual, in that no
genetic drift results from Mendelian segregation,
and as a diploid individual, in that the average
contribution of gametes is two for stable population
size. If each subpopulation contributes equally to the
next generation, there is no genetic drift and the
effective size is infinite.

For equal contributions from different individuals
within a subpopulation (S2

k = 0) and from different
subpopulations (V = 0), eqn (24) reduces to

Ne =
2nN

(1µFST)(1µFIS)
=

2nN

1µFIT

, (26)

indicating that inbreeding at any level (FST or FIS)
has an equal effect on increasing Ne. If, on the other
hand, S2

k = 2+2b (Poisson distribution of the repro-
ductive success per individual when there is a
proportion b of selfing) and V = 1/N (i.e. twice the
accumulated Poisson distribution variance), using
eqn (5), eqn (24) reduces to

Ne =
nN

(1+FST)(1+FIS)µ2FIS FST

=
nN

1+FIT

(27)

approximately, indicating that inbreeding at any
level has an equal effect on decreasing Ne. If V = 0
and S2

k = 2+2b, eqn (24) reduces to

Ne =
nN

(1µFST)(1+FIS)
(28)

approximately. Equations (27) and (28) were also
derived by Nunney (1998) for a dioecious population
using another inbreeding approach.

3.2.3 Extinction and recolonization The effective
size of a subdivided population subject to extinction
and recolonization was also derived by Whitlock &
Barton (1997). The model assumes that a population
is subdivided into n demes, each being an ideal
population with N diploid individuals. The migration
rate among demes is m, and each deme becomes
extinct with probability e per generation. Each
extinct deme is recolonized immediately by 2k
gametes in which each pair has a probability f of
having come from the same deme. The newly colon-
ized deme grows to N individuals before reproduc-
tion in the next generation (Slatkin, 1977; Whitlock
& McCauley, 1990). With f = 0, the contribution of
a deme to the next generation (N p) is either 0 with
probability e or N/(1µe) with probability 1µe.
Therefore, the variance in fitness among demes is
V = e/(1µe), and from eqns (23) or (25) we obtain
that

Ne =
nN(1µe)

1µFST+2eFST N
. (29)

Whitlock & Barton (1997) obtained from eqn (29)
that
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Ne =
nN

4N(m+e)FST

(30)

approximately, which is also true relaxing the
assumption about f. For f = 1 and k = N, eqn (30)
reduces to the equation given by Maruyama &
Kimura (1980) without mutation. With no extinction
(e = 0), eqn (30) reduces to eqn (15) with N taking
the place of NeS, as expected.

Although extinction and recolonization may
increase or decrease FST (Whitlock & McCauley,
1990), they always decrease Ne. If kiN and extinc-
tion is not rare relative to migration, Ne can be
reduced substantially (Whitlock & Barton, 1997).
For example, if e = m = 0.1, N = 1000 and k = 1,
then the effective size is 0.0062 of what it would
have been without local extinction.

3.3 The pattern of inheritance

3.3.1 Dioecious species The effective size of a
subdivided population with separate sexes was
derived by Nunney (1998) using an inbreeding
approach. He assumed an equal size of subpopula-
tions but with unequal contributions to the next
generation. The subpopulation was allowed to have
different numbers of males and females with a
constant sex ratio over generations, partial
sib-mating and arbitrary distributions of family size.
A more general equation can be obtained using a
derivation similar to the above monoecious case.
The expression derived is essentially similar to
eqn (23). When each subpopulation consists of N
individuals (half in each sex) and the fitness of
subpopulations is not correlated with F-statistics, the
expression reduces to

Ne =
nN

1
4 (1µFST)[(1+3FIS)(S 2

k+4V)+2(1µFIS)]+

2NVFST n/(nµ1). (31)

When the subpopulations have an equal size and are
ideal populations except for unequal numbers of
males (Nm) and females (Nf) and variable contribu-
tions to the next generation, the general expression
is then simplified to

Ne =
nN

(1µFST)(1+V)N/NeS+2NVFST n/(nµ1)
, (32)

where N = Nm+Nf and NeS = 4NmNf/N. Compared
with an unsubdivided population of the same size,
subdivision will decrease the effective size when
VE1/(2NeSµ1).

3.3.2 Sex-linked loci Similar to the case of a single
unsubdivided population (Caballero, 1994), the
effective size of a metapopulation for sex-linked loci
or haplo-diploid species relates to the inbreeding
rate of the homogametic sex or to the variance of
gene frequency at a neutral sex-linked locus.

Assuming all subpopulations have an equal and
constant size in the island model, Wang (1998)
derived exact recurrence equations for the PIBD of
two homologous genes from a female (the homoga-
metic sex) and from separate females within and
among subpopulations. Different numbers and sepa-
rate migration rates of males (dm) and females (df)
were incorporated, with random mating within
subpopulations. The derived expression for effective
size is complicated, but to a good approximation it
reduces to eqn (3) using an appropriate effective
subpopulation size NeS (see eqn 30 in Caballero,
1994) and the total migration rate m = 1

3 (dm+2df).
Female migration rate has a larger effect on Ne than
male migration rate, because a female carries two
genes and a male carries only one gene at a sex-
linked locus.

When there are fitness differences among
subpopulations, it can be shown that eqn (23) also
applies for sex-linked loci, with N and FST referring
to the homogametic sex only. Therefore, results and
discussions above about autosomal loci are applic-
able to the sex-linked case.

3.3.3 Haploid species For haploid species, genetic
drift in gene frequency or an increase in PIBD
comes only from differential reproductive successes
of individuals and different fitnesses among
subpopulations. In the extreme case of equal
contributions from different individuals and
different subpopulations, the gene frequency
remains the same, and the effective size is infinite.

Using a procedure similar to the monoecious case,
an equation identical to eqn (23), except for the
factor 2 of the second term in the denominator
being dropped, can be derived. If subpopulations
have an equal size but contribute unequally to the
next generation via migration, the equation reduces
to

Ne =
nN

(1µFST)(V+S 2
k)+NVFST n/(nµ1)

, (33)

where S2
k is the within-subpopulation variance in the

number of gametes contributed per individual aver-
aged over subpopulations. The effective size for a
haploid species depends on the variance in genetic
contributions at both the individual and the
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subpopulation levels. The effect of the subpopula-
tion level variation is amplified by the differentiation
among subpopulations. If the differentiation is
complete (FST = 1), each subpopulation behaves as a
single individual, and the effective size is determined
by the number of subpopulations and their differen-
tial contributions [Ne = (nµ1)/V]. If the subpopula-
tion level variance comes only from the individual
level (V = S2

k/N), then subdivision has little effect on
the effective size of a metapopulation.

3.3.4 Non-nuclear gene inheritance Birky et al.
(1989) investigated organelle gene diversity in
subdivided populations, and Chesser & Baker (1996)
considered the asymptotic effective size of a
subdivided population for non-nuclear gene inherit-
ance. If organelle genes (e.g. mtDNA) are inherited
uniparentally and are always homologous within
individuals, then they are similar to haploid inherit-
ance, and the effective size for organelle genes can
be predicted from the corresponding haploid equa-
tions (e.g. eqn 33), considering only the relevant sex.

Although homoplasmy for organelles is
considered to be near ubiquitous in higher verte-
brates (Avise, 1991), an increasing number of
species are found to be heteroplasmic (Hartl &
Clark, 1997). In this case, the genetic drift theory for
organelles becomes more complex than haploid or
diploid nuclear inheritance. An individual cell may
have different organelles that are partitioned among
daughter cells. Thus, the equations for either diploid
or haploid populations are not applicable to the
organelle genes.

4 The effects and implications of population
subdivision

4.1 The effects

The effect of subdivision is similar to nonrandom
mating in a single population, with a subpopulation
corresponding to a family and FST to FIS. The effect-
ive size for a monoecious population with partial
selfing and a dioecious population with partial full-
sib mating can be summarized as

Ne =
NT

1
2 (1µFIS)+V [(2Nµ1)FIS+1]

(34)

[Caballero, 1994, eqns (11) and (20), with S2
k/4

replaced by V ], where NT is the total population
size, N is the number of individuals per family
(N = 1 and 2 for selfing and full-sib mating, respec-
tively) and V is the variance in fitness among
families. For a subdivided population with random

mating within subpopulations (FIS = 0), eqns (24) or
(31) reduce to

Ne =
NT

1
4 (1µFST)(S 2

k+2)+V [(2Nµ1)FST+1]
(35)

approximately. Note that, to be comparable with
eqn (34), in which individuals within a family contri-
bute equally to the next generation, the individual
variance S2

k should be set to zero. Thus, eqn (35)
reduces to eqn (34) with FST taking the place of FIS.

Knowing the similarity between subdivision and
partial inbreeding, we can understand the effect of
subdivision on effective size from the point of view
of genetic drift. The original effect of subdivision is
nonrandom mating; reproduction occurs mainly
within subpopulations, resulting in a decrease in
heterozygosity. Genetic drift in gene frequency can
come from two sources in a finite population: one is
the differential reproduction among subpopulations
and among individuals within subpopulations; and
the other is the Mendelian segregation of hetero-
zygotes. A decrease in heterozygosity from
subdivision will definitely lead to a decline in genetic
drift resulting from segregation. With a given gene
frequency, however, a decrease in heterozygosity
also implies an increase in the variance of gene
frequencies among subpopulations and among indi-
viduals within subpopulations, and therefore an
increase in genetic drift because of differential
reproduction. The net effect of a decrease in hetero-
zygosity on genetic drift depends on the relative
magnitudes of the counteracting effects from the
two sources. When the variance in reproduction
success and, thus, its effect on drift are small, segre-
gation is the leading source of genetic drift and,
therefore, subdivision results in an increase in effect-
ive size. In the extreme case of equal reproductive
success (V = S2

k = 0), genetic drift comes solely from
segregation and is therefore minimized. Thus,
subdivision gives the greatest increase in effective
size, Ne = 2NT/(1µFST) from eqn (35), and Nehl
when FSTh1. On the contrary, when the variance in
reproductive success is large [Va1/(4Nµ2)], genetic
drift mainly comes from differential reproduction
among subpopulations and, therefore, subdivision
always leads to a decrease in Ne. There exists, in
fact, a balance (equilibrium) between the counter-
acting effects from the two sources, at which a
change in heterozygosity resulting from subdivision
has no influence on effective size. The condition for
the balance can be found from eqn (35) as
V = 1/(4Nµ2). With this value of V, the effects of
segregation and differential reproduction cancel out
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and Ne = n(2Nµ1) from eqn (35), irrespective of the
nonrandom mating (FST).

When ecological factors are considered,
subdivision may well enlarge the variance in repro-
ductive output among demes (V) in natural popula-
tions. Without local density regulation, V comes
from three sources. First, individual variance in
offspring number contributes an amount of S2

k/(4N)
to V. This is the variance in reproductive output of
arbitrarily defined groups of individuals. Secondly,
temporary environmental differences among demes
contribute to V. These two components of V do not
cause correlation in the change of gene frequency
over generations. Thirdly, there may be permanent
quality differences among demes. If a subpopulation
fortunately (unfortunately) inhabits an area of high
(low) quality, it will contribute more (fewer)
offspring consistently over generations. Unless
migration is complete (m = 1), the permanent differ-
ence in habitat quality that influences reproductive
success will tend to increase the long-term genetic
drift and inbreeding.

The permanent difference in fitness among
subpopulations is similar to the inherited variation
under selection (Santiago & Caballero, 1995). They
both result in correlated changes in gene frequency
or gene identity over generations and, therefore, Ne

is greatly reduced. The patterns of correlated
changes in fitness associated with an allele across
generations are different, however, for inherited
fitness and for permanent habitat difference. In the
former case, the correlated change between two
successive generations is gradually dissipated by
recombination, whereas in the latter case, the corre-
lated change is kept completely as long as the allele
remains in the same subpopulation and is totally lost
once it moves to a new subpopulation. Recombina-
tion plays a role similar to migration in reducing the
correlated changes, the magnitude of effect lying
somewhere between the island model and the step-
ping stone model (Whitlock & Barton, 1997).
Subdivision with permanent difference in fitness
among subpopulations is also analogous to hitchhik-
ing or background selection, in which a neutral
allele finds itself associated with one of the genetic
backgrounds under directional selection.

Although subdivision usually tends to increase
variance in genetic contributions among demes in
natural populations, it might also be used to
decrease the variance in long-term contribution
from different individuals in controlled populations.
This is best illuminated by the following example. To
minimize the inbreeding and genetic drift in a small
population with Nm males and Nf females (sex ratio

r = Nf/NmE2), Gowe et al. (1959) proposed a selec-
tion scheme in which each male has one son and r
daughters, and each female has one daughter and a
probability of 1/r of contributing one son. The selec-
tion scheme combined with random mating (each
male mates at random with r females) has been
known as minimal inbreeding (Falconer & Mackay,
1996, p. 69) and considered ideal for both control
populations and conserved populations. Under
minimal inbreeding, the variance in paternal
contribution to the next generation is always zero.
However, the paternal contribution to the gene pool
after two or more generations is still variable. For
example, males may have different numbers of
grandsons resulting from the differential contribu-
tions of their daughters. If the population is
subdivided into Nm herds, each consisting of Nf

females and one male, and males migrate randomly
among herds and females do not migrate, then the
variance in paternal long-term contribution is also
zero under Gowe et al.’s (1959) selection scheme
(Wang, 1997c). Therefore, the subdivision scheme
can increase the effective size by as much as 12.5%
for autosomal loci and 50% for sex-linked loci,
compared with random mating (Wang, 1997c). The
subdivision scheme is very efficient in minimizing
inbreeding, not only in the long term but also in the
short term (especially for large r), in contrast to the
usual subdivision with equal sizes and contributions
of all subpopulations (section 3.1) or circular pair
mating (Kimura & Crow, 1963b), which results in an
increased Ne with a sacrifice of a higher rate of
inbreeding at initial generations.

4.2 Implications

The above results imply that subdivision in natural
populations is much more likely to result in a
decrease rather than an increase in Ne. Classical
models assume a constant size and an equal
contribution of different subpopulations, resulting in
an increase in Ne because of subdivision, particularly
at low levels of gene flow (section 3.1). The assump-
tion is, however, unlikely to be realistic in natural
populations in which subpopulations may contribute
unequally to the next generation. There are gener-
ally quality differences across the habitat that
increase the variation in subpopulation productivity,
and permanent quality difference or extinction and
recolonization can substantially amplify the repro-
ductive variance among subpopulations and thus
decrease Ne enormously. The implication is that
Ne/N of natural populations should be smaller than
one, and the lower the level of gene flow in a
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species, the smaller the estimate of its Ne/N. A
review of 192 estimates of Ne/N from 102 species of
plants and animals (Frankham, 1995) shows that the
estimates vary dramatically, ranging from 10µ6 in the
pacific oyster (but see Nunney, 1996) to 0.99 in
humans, with an overall average of only 0.1. These
estimates, however, do not account for subdivision
and gene flow, and some of them may therefore be
biased.

In conservation, if the habitat of a species is
permanently fragmented and migration among
subpopulations is not possible except by carefully
planned management, Ne of the species could be
increased compared with a panmictic population of
the same size. In this case, effort should be made to
ensure that each subpopulation does not extinguish,
and a certain level of artificially aided migration
(Mills & Allendorf, 1996) is carried out to avoid
inbreeding depression. The results reviewed in this
paper suggest that subdivision and thus differentia-
tion at different levels have a similar effect on Ne,
the direction of the effect depending on the variance
in reproductive success at the corresponding levels.
To increase Ne, gene flow at a particular level of
subdivision should be low, if reproductive variation
at this level can be minimized by management, but
gene flow should be high if reproductive variation
cannot be minimized. However, even if effective size
can be increased by restricted migration, it should be
noted that this is realized only after many genera-
tions (see below), during which the inbreeding rate
might be increased compared with panmixia.

At the planning stage of a conservation
programme, whether a population should be
subdivided or not depends on many factors. If the
reproduction and migration of the population and
the ecological factors could be managed intensively,
then subdivision may be beneficial for conserving the
genetic variation for a given population size. This is
the case for domesticated species, in which a large
number of local breeds are endangered by the
worldwide spread of a few highly productive
commercial breeds and their crosses. For wild
species in a more or less natural habitat, it is diffi-
cult to practise intensive management. Therefore, it
is generally safer to conserve the species in a single
large population rather than in a number of
subpopulations. Because of its small size, a
subpopulation without careful management is more
likely to become extinct because of demographic and
environmental stochasticity (Lande, 1988) and
inbreeding depression (Saccheri et al., 1998), result-
ing in a drastic decrease in Ne of the
metapopulation.

5 Some other considerations of subdivision

5.1 Complete subdivision

In the above, each subpopulation is not completely
isolated from the rest; it receives immigrants from
and contributes emigrants to the entire population.
If a subpopulation only receives immigrants from
but does not contribute emigrants to the meta-
population, the rate of inbreeding or genetic drift in
this subpopulation will be smaller than that of the
rest of the metapopulation. If, on the contrary, a
subpopulation only contributes emigrants to but
does not receive immigrants from the rest of the
metapopulation, its effective size is determined by
itself as a single population.

If all the subpopulations are isolated from each
other, no asymptotic effective size for the entire
metapopulation exists. In this case, the rate of
inbreeding or genetic drift in each subpopulation
will reach an asymptotic value, corresponding to the
eigenvalue effective size of the subpopulation. The
inbreeding effective size of the metapopulation
(NeI), signifying the rate of decrease in the average
heterozygosity of individuals in the whole popula-
tion, is a weighted average of the effective
subpopulation sizes. The equilibrium variance effect-
ive size of the metapopulation (NeV) is different
from NeI and is not reached until the differentiation
is complete (FST = 1). With FST = 1, different alleles
are fixed in different subpopulations, and the genetic
drift is determined only by the differential contribu-
tions from subpopulations. For the case of an equal
size and unequal contributions of subpopulations,
we have NeV = (nµ1)/(2V) for diploid or NeV =
(nµ1)/V for haploid species, and NeV is infinite if
subpopulations contribute equally to the next gener-
ation (V = 0).

5.2 More than two levels of subdivision

A population may be subdivided at more than two
levels in a hierarchy. For simplicity, let us consider a
monoecious population of constant size subdivided
into s lines, each line subdivided into n sublines, and
each subline containing N individuals. Different
lines (sublines) have an equal size but may contri-
bute unequally to the next generation, migration
among sublines within lines being more frequent
than that among lines. No line or subline is
completely isolated from the rest of the meta-
population. It can easily be shown that the
F-statistics satisfy the relation (1µFIT) = (1µFLT)
(1µFSL)(1µFIS), where FIS, FSL, FLT and FIT are
similarly defined as Wright’s F-statistics with
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subscripts I, S, L and T referring to individuals,
sublines, lines and the total metapopulation, respec-
tively. The effective size of the ith line can be
obtained as

NeLi =
nNmi

1
4 (1µFSL,i)[(4VSi+S 2

ki)(1+FIS,i)+2mi(1µFIS,i)]+

2NVSi FSL,i n/(nµ1) (36)
using a procedure similar to the derivation of
eqn (24), where mi and VSi are the average and vari-
ance of fitness of sublines within line i, FIS,i and FSL,i

are the average FIS and FSL over sublines in line i, S2
ki

is the variance in the number of gametes contributed
per individual averaged over sublines within the ith
line. The effective size of the metapopulation can be
derived as

Ne =
snN

(1µFLT){1
4 (1µFSL)[(1+FIS)(S 2

k+4VS)+

2(1+VL)(1µFIS)]+2NVS FSLn/(nµ1)}+
2nNVL FLTs/(sµ1) (37)

where VL is the variance in fitness among lines, FLT,
FSL, FIS, S2

k and VS are averages of FLT,i, FSL,i, FIS,i, S2
ki

and VSi over lines. If there is no variation in repro-
ductive success at any level of subdivision
(S2

k = VS = VL = 0), eqn (37) reduces to

Ne =
2snN

(1µFLT)(1µFSL)(1µFIS)
=

2snN

1µFIT

. (38)

If individual reproductive success follows a Poisson
distribution [S2

k = 2+2b, where b is the selfing
proportion], VS and VL are twice the accumulated
Poisson distribution variance (VS = 1/N, VL = 1/nN),
and eqn (37) reduces to

Ne =
snN

(1+FLT)(1+FSL)(1+FIS)µ2FLTFSLµ2FLTFISµ

2FSL FIS

=
snN

1+FIT

(39)

approximately. In both cases, the effective size of
the metapopulation depends on the total size (snN)
and the total differentiation (FIT); the number of
levels of subdivision in the hierarchy is irrelevant.
More generally, however, the importance of each
level of subdivision in determining Ne depends on
the differentiation and variance in fitness at the
level, as can be seen from eqn (37).

5.3 Realization of the asymptotic effective size

In a Wright–Fisher ideal population with completely
random union of gametes, the equilibrium rate of
inbreeding and genetic drift or the asymptotic effect-
ive size is attained immediately (in one generation).
Any form of nonrandom mating will retard the reali-
zation of the asymptotic effective size, inbreeding
lagging some generations behind genetic drift when
close inbreeding is avoided or vice versa (Caballero,
1994). In both cases, inbreeding and variance effect-
ive sizes are different and variable over the first few
generations before they converge gradually to the
same asymptotic value. The larger the departure
from a random union of gametes, the greater the
number of generations necessary to realize it. In the
initial generations, neither inbreeding nor genetic
drift can be predicted accurately by the asymptotic
effective size. Other forms of nonrandom mating,
such as age structure (Choy & Weir, 1978) and
population subdivision (Chesser et al., 1993; Wang,
1997a,b), and factors other than nonrandom mating,
such as artificial selection, hitchhiking and perma-
nent difference in fitness among subpopulations,
also retard the realization of asymptotic effective
size. Here, we consider population subdivision as a
form of nonrandom mating and its effect on the
time required to realize the equilibrium F-statistics
and effective size.

For simplicity, let us consider Wright’s ideal
infinite island model. The genetic differentiation
among subpopulations will increase over generations
until it reaches the equilibrium value (FST) asymptot-
ically. The number of generations for the instanta-
neous differentiation (FST,t) to reach FST,t = lFST

(where 0sls1) is

tl2µ2NFST ln (1µl) (40)

when Nu1 and mi1 (Whitlock, 1992). The length
of the retardation is proportional to the subpopula-
tion size and the equilibrium amount of differentia-
tion. Equation (40) is also valid for a
metapopulation with non-ideal subpopulations when
the census size of a subpopulation is replaced by its
effective size (NeS). The term 2NeS FST (that we may
call the ‘effective genetic differentiation’) deter-
mines the length of time to reach the equilibrium
rate of inbreeding and genetic drift. With
2NeS FST = 50 for example, 35 and 150 generations
are required for the subdivided population to realize
50% and 95% of its equilibrium FST, respectively.

The effective size depends on demographic para-
meters and F-statistics, and its asymptotic value is
realized once all the F-statistics reach their equili-
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brium values. Compared with FST, FIS reaches its
equilibrium value much faster and is little affected
by factors other than nonrandom union of gametes
within subpopulations (Wang, 1997a). Therefore, the
number of generations required to reach the asymp-
totic effective size is essentially determined by FST. If
there are more levels of subdivision in a hierarchy, it
is the effective differentiation at the highest level of
subdivision (2NeL FST for the case described in
section 5.2) that determines the time. At initial
generations, the variance effective size is generally
larger than the inbreeding effective size. The former
decreases steadily, and the latter generally increases
with possible fluctuations over generations, even-
tually converging to the same asymptotic value
(Wang, 1997a,b).

With subdivision, mating is more likely between
individuals within subpopulations than among
subpopulations. This is somewhat like mating
between individuals of higher than average
co-ancestry in a single population. Compared with
completely random union of gametes, subdivision
results in a higher initial rate of inbreeding, which
decreases over generations. Therefore, the fixation
probability of favourable genes and the rate of shifts
between adaptive peaks (Barton & Rouhani, 1991)
depend on population structure differently from
neutral variability. For species with less frequent
migration among subpopulations, a large number of
generations is necessary to reach its asymptotic
effective size. A highly differentiated population
may never attain its asymptotic effective size,
because it is highly unlikely that both its demo-
graphic and geographical properties remain constant
for many generations.
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