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Power of a chromosomal test to detect
genetic variation using genetic markers
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The power of a backcross design to detect genetic variation associated with a single chromo-
some was investigated. A simple chromosomal test was suggested in which the phenotypic
observations are regressed onto genotypic information from multiple markers. It was shown
that the optimum marker spacing depends on the underlying genetic structure and chromo-
some length. A sparse marker map, with markers approximately every 50 cM, is sufficient to
detect chromosomal variation if the nature of the genetic variance is coupled polygenes,
whereas the optimum marker spacing to detect a single QTL somewhere on the chromosome
is slightly denser, about 20–40 cM. Although the method was demonstrated for line crosses, it
can equally be applied to other populations, for example four-way crosses and half-sib designs.
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Introduction

With the advent of molecular marker technology,
sophisticated statistical methods have been
developed to map quantitative trait loci (QTLs) in
experimental and commercial populations of plants
and animals (e.g. Lander & Botstein, 1989; Haley &
Knott, 1992; Jansen, 1993, 1994; Zeng, 1993, 1994;
Haley et al., 1994; Knott et al., 1997). These methods
have in common that they focus on mapping a single
or multiple QTLs of moderate to large effect on a
chromosome. However, the actual genetic architec-
ture in a population under study is likely to be a
distribution of QTL effects, with some individual
QTL effects large enough to be detected, and many
effects so small that they contribute to polygenic
variation. For a genome-wide scan, few general
strategies have been suggested to elucidate the QTL
configuration across the genome. One of the most
general methods is the MQM method of Jansen
(1993, 1994), which consists of first identifying
regions on different chromosomes which explain
phenotypic variation by regression onto individual
markers. This is followed by the mapping of multiple
QTLs by applying interval mapping whilst fitting
significant markers from other regions as cofactors

in the model. Zeng (1993, 1994) proposed an almost
identical method.

It can be argued that a natural strategy to map
QTLs in a genome-wide scan is to start by identify-
ing those chromosomes which explain a significant
proportion of variation, and then to dissect the QTL
configuration on those chromosomes by mapping
single or multiple QTLs (Visscher & Haley, 1996).
This approach potentially allows the use of a rela-
tively low resolution genome scan in the first
instance, followed by additional genotyping in
regions that contain significant genetic variation in
order to dissect its causes in more detail. To detect
genetic variation on a single chromosome, a
chromosomal test has been suggested, in which
phenotypes are regressed on a number of markers
on that chromosome (Visscher & Haley, 1996). The
rationale of such a test is that those chromosomes
that do not explain a significant amount of variation
should be excluded from further analyses. An addi-
tional attraction of the approach is that it simplifies
the problem of setting significance thresholds (e.g.
Lander & Kruglyak, 1995), because in the first
instance the number of independent tests equals the
number of chromosomes. This test has been applied
in data analysis in trees (Knott et al., 1997), pigs
(Knott et al., 1998) and dairy cattle (De Koning et
al., 1998).*Correspondence. E-mail: peter.visscher@ed.ac.uk
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Depending on the amount of genetic variance,
and its exact nature (single QTL, multiple QTLs,
polygenic), there will be an optimum marker spacing
to be used for the chromosomal test. For example, if
too few markers are used, there is a chance that the
genetic variance may not be detected. If too many
markers are used, the high correlation between adja-
cent markers means that markers are being included
that explain little variation, so that the test fails to
be significant. In this study we explore the factors
that determine the optimum marker spacing, and
give some empirical results for the power of a
chromosomal test under various QTL configura-
tions. We compare the power of the chromosomal
test with the power of interval mapping using a very
dense marker map.

Methods

We use a backcross (BC) or F2 population of size N,
with fully informative markers. The amount of
genetic variation on a single chromosome of
interest, as a proportion of the phenotypic variance,
is h2

c. The test to detect genetic variance on the
chromosome is based on fitting m markers, and the
test statistic is distributed as an F-test under the null
hypothesis of no genetic variation associated with
that chromosome. For large N, the test statistic is
approximately distributed as a x2. For a backcross
population, the F-test has {m,Nµmµf } degrees of
freedom and the x2 test has m degrees of freedom,
where f is the number of additional fixed effects,
including the mean, in the model. For an F2 popula-
tion, the degrees of freedom are {2m,Nµ2mµf }
and 2m, respectively, because it is assumed that two
parameters (two degrees of freedom) are fitted per
marker. In the presence of genetic variance, the test
statistic is distributed as noncentral F, or, approxi-
mately, as a noncentral x2. For a single marker coin-
cident with a single QTL, the noncentrality
parameter is Na2/2 or Na 2/4, for F2 and BC popula-
tions, respectively, where {2a} is the difference
between the parental lines for the QTL alleles. If
the markers fitted fully explain the genetic variance
(var (A)), then the noncentrality parameter is N {var
(A)/var (E)} = Nh2

c/(1µh2
c), with var (E) the

environmental variance. However, because the
markers’ positions are unlikely to coincide with
QTLs on that chromosome, the markers only
explain a proportion of the variance. Depending on
the underlying genetic structure, the proportion of
variance explained by the markers can be
determined.

Allowing for the fact that the markers do not
account for all of the genetic variation on the
chromosome, the noncentrality parameter becomes:

l = N R2
{L,m} h2

c/(1µh2
c), (1)

with R2
{L,m} the amount of genetic variance explained

by m markers on a chromosome of length L.
The power of a chromosomal test is calculated as

the probability that the test statistic exceeds a given
threshold value:

Power|(N,h2
c ,m,L) = Prob (TaTHRESa), (2)

with T the test statistic (which follows a noncentral
x2 or F), and THRESa the threshold of a central x2

or F pertaining to a Type I error of a. The thresh-
olds for the power calculations were calculated using
a central x2 distribution, on the basis that N will
usually be large enough to warrant this approxima-
tion. Given the values of N, h2

c, m and L, the
noncentrality parameter was calculated according to
eqn (1), and the power was determined using an
approximation to the noncentral x2 distribution
(Abramowitz & Stegun, 1964).

Coupled polygenes

We define the coupled polygenic model as a large
number of QTLs in coupling, with small effect
spread evenly throughout each chromosome
(Visscher & Haley, 1996), where the amount of
genetic variance explained by the markers was deter-
mined previously for BC populations and four-way
crosses (Visscher, 1996; Knott et al., 1997). In the
case of coupled polygenes, the amount of genetic
variance is proportional to the variation in genomic
proportion (e.g. Hill, 1993). Genomic proportion is
defined as the proportion of the genome which
originates from either of the two founder lines.
Because it is assumed that those founder popula-
tions are fixed for alternative alleles at many linked
loci each with the same effect on the trait (Visscher
& Haley, 1996), it follows that the variation in
genomic proportion is proportional to the genetic
variance attributable to the many linked loci. For F2

populations, the same R2 can be used because all the
relevant components, i.e. the variance in marker
scores, the variance in genomic proportion and their
covariance, are scaled by a factor of 2 relative to the
BC population.

Single QTL

In the case of fully informative markers, the propor-
tion of QTL variation explained by the markers is a
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function of the distance between the QTL and the
nearest markers. If the QTL is located outside a
marker bracket (i.e. to the left of the leftmost
marker, or to the right of the rightmost marker on
the chromosome), the proportion explained, assum-
ing Haldane’s mapping function, is:

R2
{M} = (1µ2rQTL,M)2 = exp{µ4d}, (3)

with rQTL,M the recombination rate between the QTL
and the nearest marker M, and d the corresponding
distance in Morgans. If the QTL is flanked by two
fully informative markers, M1 and M2, the propor-
tion of variance explained is:

R2
{M1,M2} = [(1µ2r1)2+(1µ2r2)2µ2(1µ2r1) (1µ2r2)

(1µ2rm)]/[1µ(1µ2rm)2]

= [exp{µ2d1}+exp{µ2d2}µ2exp{µ4 dm}]/
[1µexp{µ4 dm}], (4)

with r1 and r2 the recombination rates between the
QTL and the first and second marker, respectively,
and d1 and d2 the corresponding distances in
Morgans. The recombination rate between the flank-
ing markers is rm, with corresponding distance dm.
These results follow directly from the calculations of
Haley & Knott (1992) and Whittaker et al. (1996).

For a given location of a single QTL on the
chromosome, the R2 value can be calculated for any
given marker locations, given eqns (3) and (4).
Alternatively, the average power of detecting varia-
tion from a single QTL can be calculated assuming a
uniform distribution of the location of that QTL.
That is, assuming that the QTL is located at 0, 1, 2,
. . . , L cM, the R2 value and subsequently the power
can be calculated for each possible QTL position,
and the power corresponding to a QTL of ‘average
location’ calculated by averaging the powers of all
L+1 positions. In addition to the average power
calculated in this way, an element of risk can be
calculated by determining the standard deviation of
power for all positions along the chromosome.

Markers and heritability

It was shown previously that, in the case of equally
spaced markers, the maximum variance in genomic
proportion is explained when the two outermost
markers are positioned slightly in from the ends of
the chromosome (Visscher, 1996). For example, for
a chromosome of 100 cM, the optimum positions of
two markers to obtain the maximum R2 were 27 and
73 cM. However, the loss in precision of estimating
the amount of genomic proportion is small when an
equal marker spacing is used which treats the

chromosome as if it were circular, that is, assuming
a marker spacing between the two distal markers
which is the sum of the distance between the
markers and the chromosome ends. Therefore, the
following marker spacing was used throughout this
study: (i) in the case of a single marker, it was
positioned in the middle of the chromosome; (ii)
with multiple markers, the distance between the
markers was D = L/m, and the first marker was
placed at position D/2. For example, for two markers
on a 100 cM chromosome, D = 50 cM and the
marker positions are 25 and 75 cM.

The power of the chromosomal test was
calculated as a function of x = Nh2

c/(1µh2
c). For a

typical genome of 2000 cM, the average heritability
per 100 cM is 20.02 for a trait with a heritability of
0.40 in a BC or F2 population. Therefore, the values
of x taken into account were in the range 1–20 for
L = 100, and 10–100 for L = 500. A value of x = 1
corresponds, for example, to the case of N = 100 and
h2

c = 0.01, or N = 500 and h2
c = 0.002, and x = 20

corresponds to N = 100 and h2
c = 0.167, or N = 500

and h2
c = 0.038.

Interval mapping

One obvious alternative approach to using the
chromosomal test is to apply interval mapping
(Lander & Botstein, 1989; Haley & Knott, 1992)
along the chromosome. Depending on the actual
genetic architecture, interval mapping may be more
or less powerful than other mapping strategies.
Powers were calculated for interval mapping assum-
ing a single QTL randomly positioned along the
chromosome. For interval mapping, it was assumed
that a dense marker map was used, so that the R2

value was always unity. The corresponding threshold
was calculated from the Lander & Botstein (1989)
infinitely dense map approximation. For a single
chromosome with L = 100 and L = 500, these
thresholds for the F-ratio are 9.1 and 12.5, respec-
tively. Powers were compared to that of the chromo-
somal test, fitting a range of numbers of markers for
the latter.

Results

The power to detect genetic variation was calculated
for coupled polygenes and for variance resulting
from a single QTL. In the case of a single QTL,
both the power corresponding to a fixed position of
the QTL, and the average power assuming a
uniform distribution of the location of the QTL on
the chromosome were calculated. The length of the
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chromosome was either 100 or 500 cM, and the
number of equidistant markers varied from 1 to 20.

In Table 1, the variance in genomic proportion
that is explained by the markers is shown, for
L = 100 and L = 500. The R2 for both the optimum
marker spacing, determined by a search algorithm
(see Visscher, 1996, for details), and the approxi-
mate marker spacing actually used are shown. The
results for L = 100 cM are the same as in Visscher
(1996). Clearly, the approximation is very reason-
able. For L = 100 cM, three markers are sufficient to
detect a0.9 of the variation in genomic proportion,
whereas for L = 500 cM, more than nine markers
are needed to achieve R2a0.9.

Coupled polygenes

For L = 100 cM, the power of a chromosomal test to
detect coupled polygenic variation is shown in Fig. 1.
It appears that one or two markers per chromosome
are sufficient, and that fitting more than two
markers reduces power. The curves for the different
marker spacings hardly overlap, so that the same
marker spacing (one or two markers) has the best
power, regardless of population size or heritability.
Hence, the optimum marker spacing is about 50 cM.
However, the loss in power by fitting markers every
20 cM (i.e. results for five markers) is generally less
than 10%.

For a much longer chromosome, L = 500 cM, the
power curves plotted in Fig. 2 for a range of
Nh2

c/(1µh2
c) of 10–100 are very different from those

of the shorter chromosome, in that the overall
power is lower for the overlap of Nh2

c/(1µh2
c) with

Fig. 1 (range 10–20), and the optimum number of
markers differs. The maximum power is achieved by
fitting 10–20 markers. Hence, the optimum marker
spacing to detect coupled polygenic variance for a
long chromosome is in the range 25–50 cM. When
more than 20 markers were fitted, power decreased
because the additional parameters fitted did not
explain more variation (results not shown). In prac-
tice, fitting too many markers might lead to estima-
tion (colinearity) problems if there are no
recombinations between one or more pairs of
markers.

Single QTL

The power to detect genetic variation that is caused
by a single QTL at positions 0, 25 and 50 cM,
respectively, was calculated for a 100 cM chromo-
some. It was found that the power and optimum
marker spacing are extremely dependent on the
location of the QTL. For example, when the QTL is
outside the location of the distal markers (Fig. 3),
the lowest power is achieved by fitting a single
marker which is at 50 cM, because the
R2 = exp{µ4Å0.50} = 0.135 (eqn 3), which is
extremely low. The optimum marker spacing for a
QTL at 0 cM is between 10 and 20 cM. For a QTL
positioned at 25 cM, the obvious optimum number
of markers is two, because one of the markers then
coincides with the location of the QTL (results not

Table 1 Proportion of variance in genomic proportion explained by markers, for
a chromosome of length 100 or 500 cM

Chromosome length

100 cM 500 cM
Number Marker spacing Marker spacing
of
markers Optimum Approximate Optimum Approximate

1 0.704 0.704 0.219 0.219
2 0.884 0.882 0.415 0.406
3 0.942 0.941 0.568 0.556
4 0.966 0.966 0.678 0.670
5 0.978 0.978 0.757 0.751
6 0.984 0.984 0.812 0.808
7 0.988 0.988 0.851 0.849
8 0.991 0.991 0.880 0.879
9 0.993 0.993 0.902 0.901

10 0.994 0.994 0.918 0.918
20 0.998 0.998 0.978 0.978
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shown elsewhere). All other marker spacings are
inferior, with both the widest (single marker) and
narrowest (20 markers) spacings giving poor power.
For a single QTL at location 50 cM, the optimum
number of markers is one, because the marker is
placed at the same location as the QTL. Fitting any
odd number of markers gives an R2 of unity, because
the middle marker always coincides with the QTL

position. Hence, three (not shown) and five markers
are superior over other marker densities.

Average QTL position

Results for the average power pertaining to a single
QTL that is uniformly distributed along the chromo-
some are shown in Figs 4 and 5. For the 100 cM

Fig. 1 Power of a chromosomal test to detect variance resulting from coupled polygenes depending on the population size,
heritability and marker density for a BC population. Chromosome length is 100 cM.

Fig. 2 Power of a chromosomal test to detect variance resulting from coupled polygenes depending on the population size,
heritability and marker density for a BC population. Chromosome length is 500 cM.
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chromosome (Fig. 4), the average power curves are
similar for a range of marker densities. In particular,
the curves for two and five markers are similar,
which suggests that in practice a marker spacing of
about 20–50 cM is optimum. About 10% in power is
lost when fitting 10 instead of five markers. For the
longer chromosome (Fig. 5), too few markers is
clearly inferior. The optimum number of markers is

10–20 markers, corresponding to a marker spacing
of 25–50 cM.

Interval mapping

Results comparing the power to detect a single QTL
for interval mapping and the chromosomal test are
shown in Table 2. For low powers, corresponding to

Fig. 3 Power of a chromosomal test to detect variation resulting from a single QTL depending on the population size,
heritability and marker density for a BC population. Chromosome length is 100 cM, and the QTL is located at 0 cM.

Fig. 4 Average power of a chromosomal test to detect variation resulting from a single QTL depending on the population
size, heritability and marker density for a BC population. Chromosome length is 100 cM, and the QTL is uniformly
distributed on the chromosome.
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a small amount of variation explained by the single
QTL on that chromosome, the chromosomal test is
more powerful than interval mapping. For example,
the power for the chromosomal test was 30% to
detect a heritability of 1% caused by the single QTL
when using four markers on a 100 cM chromosome,
whereas the corresponding power of interval
mapping was 21% (Table 2). However, for inter-
mediate and higher powers on the larger chromo-
some (L = 500), interval mapping is equal to or
better than the chromosomal test. For example, the

power to detect a heritability of 3% for the chromo-
somal test was 56% when fitting 10 markers, and
64% for interval mapping. The variation in the
power along the chromosome, as measured by the
standard deviation of the power, was 11% in that
case. There is no variation in the power for interval
mapping, because it was assumed that the relative
amount of genetic variation detected by the dense
marker map was always 100%.

A final comparison was made in which the power
of interval mapping was calculated under coupled

Fig. 5 Average power of a chromosomal test to detect variation resulting from a single QTL depending on the population
size, heritability and marker density for a BC population. Chromosome length is 500 cM, and the QTL is uniformly
distributed on the chromosome.

Table 2 Power (Å100) of the chromosomal test and its standard deviation
(Å100) for two marker spacings (number of markers m = 2, 4), and power
(Å100) for an interval mapping test for a QTL randomly positioned along a
chromosome of length L = 100 and L = 500 cM

L = 100 cM L = 500 cM

Chromosomal test Chromosomal
test

Interval Interval
h2

c (Å100) m = 2 m = 4 mapping m = 10 m = 20 mapping

1 34 (8) 30 (2) 21 19 (4) 16 (1) 9
2 62 (12) 59 (4) 56 37 (8) 33 (3) 35
3 81 (11) 80 (3) 83 56 (11) 52 (5) 64
4 91 (7) 92 (2) 95 72 (11) 69 (5) 85
5 96 (5) 97 (1) 99 83 (9) 82 (5) 95

10 100 (0) 100 (0) 100 99 (1) 100 (0) 100
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polygenic inheritance. A problem arises in how to
determine the average proportion of polygenic
genetic variation that is accounted for when using
interval mapping. We assumed that this proportion
is approximated by the proportion of coupled poly-
genic variation that is detected by a single optimally
spaced marker. The proportion of genetic variance
attributable to coupled polygenes that is detected by
a single marker is, on average, largest when that
marker is in the middle of the chromosome
(Visscher, 1996). Hence, the R2 values for interval
mapping were calculated for a single centrally posi-
tioned marker, and the power was calculated assum-
ing a threshold for a dense marker map. Results are
shown in Table 3. The power of interval mapping to
detect genetic variance is generally low, in particular
for the long chromosome. For example, for a poly-
genic heritability of 0.05 on a chromosome of
500 cM, the power to detect genetic variance using
interval mapping is only 12%. The corresponding
power for the chromosomal test, using the same R2

value (i.e. fitting a single marker only), is also shown
in Table 3. These powers are much larger, because
the chromosomal test explains more of the variance
and a lower significance threshold was used to detect
significant genetic variance on the chromosome.

Discussion

In this study we have investigated the power of a
backcross design to detect genetic variation associ-
ated with a single chromosome. A simple chromo-
somal test was suggested in which the phenotypic
observations are regressed onto genotypic informa-
tion from multiple markers. We have shown that the
optimum marker spacing depends on the actual
genetic architecture and chromosome length.
Although the method was demonstrated for line

crosses, it can equally be applied to other popula-
tions, for example four-way crosses (Knott et al.,
1997) and half-sib designs (De Koning et al., 1998).

The results suggest that a sparse marker map,
with markers spaced approximately every 50 cM, is
sufficient to detect chromosomal variation if the
nature of the genetic variance is coupled polygenes.
On average, the optimum marker spacing to detect a
single QTL somewhere on the chromosome is
slightly denser, about 20–40 cM.

In practice, the objective of genome scans is not
just to partition the variation among chromosomes.
Usually, the main objective is to identify regions of
the genome that cause a significant proportion of
the observed variation. If the chromosomal test is
used as a first step in a sequence of tests, a relatively
sparse map could be used to identify those chromo-
somes on which more detailed analysis should be
performed. This will, however, generally require
denser marker information, because it is not possible
to dissect the causes of variation with few markers.
At the extreme, for example, the optimum density of
two markers on a 100 cM chromosome may have
been used for the chromosomal test. With only two
markers it is not possible to infer the presence of
more than a single QTL with least squares analysis
(Whittaker et al., 1996) and maximum likelihood
analysis would be almost as severely compromised.

An obvious alternative approach and one that is
currently widely used is to perform interval mapping
throughout the genome. The balance of advantages
between the two methods will depend upon genome
structure and the underlying genetic structure for
the trait. As might be expected, results from Table 2
indicate that interval mapping may be a superior
strategy in a large genome with only a single major
QTL segregating. For the smaller chromosome with
a single QTL, the powers of the two methods are

Table 3 Power (Å100) for the chromosomal test (using a single marker) and
interval mapping test under variance resulting from coupled polygenes for a
chromosome of length L = 100 and L = 500 cM

L = 100 cM L = 500 cM

h2
c(Å100)

Chromosomal
test

Interval
mapping

Chromosomal
test

Interval
mapping

1 47 12 18 1
2 78 35 31 2
3 93 61 45 4
4 98 80 57 8
5 100 91 68 12

10 100 100 96 46
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similar and under the assumed infinitesimal model
the chromosomal test is generally superior (Table 3).
In the latter case the power from interval mapping is
not only inferior, but in addition the wrong infer-
ence would be made, because the method would
locate a single QTL when in fact there are many.
The superior power of interval mapping when
analysing a long chromosome with only a single
QTL is unsurprising, because many redundant
markers (i.e. all those that do not flank the QTL)
are fitted in the chromosomal test. In fact, it is
perhaps surprising how well the chromosomal test
does in terms of power relative to interval mapping
in this case.

We have deliberately chosen extreme, and to that
extent unrealistic, genetic models which provide
boundaries for the performance of the two analytical
methods. The range of possible underlying genetic
structures is unclear. Most QTL mapping studies
detect up to around 10 QTLs for any individual
trait, which explain a major proportion, but not all,
of the genetic variance (e.g. Stuber, 1995). It is also
interesting to note that for a sizeable fraction of
QTLs detected the high-scoring QTL allele comes
from the low-scoring line. The limited power of
QTL studies means that QTLs of small effect will
not have been detected and estimates of effects of
detected QTLs will not be precise and may be
inflated. Therefore, these analyses provide only a
limited guide to the likely range of underlying
genetic situations. However, we can conclude from
these studies that a chromosome representing a size-
able proportion of the genome is likely to be carry-
ing more than a single major QTL. In addition,
relatively often the effects of linked QTLs are in
opposite directions, and interval mapping has been
shown to lose substantial power in these circum-
stances (Haley & Knott, 1992). As soon as there is
more than one QTL on a chromosome, the relative
power of the chromosomal test compared to interval
mapping will increase. Thus, given the relatively
good performance of the chromosomal test
compared to interval mapping in the extreme case of
a single QTL on a large chromosome, the chromo-
somal test may often have the advantage of power in
practice.

There remain some unexplored issues relating to
the chromosomal test. In particular, for outbred
populations or crosses between outbred lines,
markers are not completely informative as they are
in the theoretical studies performed here. This
means that some markers in some individuals will
have missing information (as is usually the case with
crosses based on inbred lines because of technical

difficulties, etc.). In practice missing markers can be
replaced with ‘virtual markers’ constructed from
information from flanking and informative markers.
This will, however, change the correlations between
adjacent markers from those found when markers
are fully informative and this is likely to impact
upon the optimum marker densities for the chromo-
somal test.

The numerical examples in the present studies
were all performed for a backcross population. In
many livestock QTL mapping experiments, F2 popu-
lations are used, and then a choice can be made in
the number of degrees of freedom fitted per marker
for the chromosomal test (one or two). For small
experimental population sizes, it may be better to fit
only a single degree of freedom per marker to avoid
losing too many degrees of freedom in the analysis,
because for additive effects most variance will be
taken out by a single marker effect. In addition,
fitting an additive model for multiple markers is
consistent with the hypothesis of an infinitesimal
coupling model (Visscher & Haley, 1996), whereas a
dominance model is not.

We have made some comparisons of the chromo-
somal test with interval mapping in this paper. It
would also be valuable to compare the chromosomal
test with MQM mapping (Jansen, 1993, 1994).
However, as previously noted, the outcome of any
comparisons will very much be dependent on the
actual genetic architecture. For example, Jansen
(1994) pointed out that the ability to separate linked
QTLs of opposite effects strongly depends on the
exact locations of the QTLs and on the marker
spacing, and that the MQM method would be better
than simple interval mapping in these cases. In this
respect, the chromosomal test would be no different,
in that two closely linked QTLs (distance, say,
s20 cM) with opposite effects would not be
detected with a very sparse marker map. Analyses of
real data sets with the alternative methods would be
very helpful to clarify the value of the methods in
practice. The work of Knott et al. (1998) provides
one comparison, and in that study an interval
mapping implementation close to MQM mapping
gave results similar to a chromosomal test. The
study of Knott et al. (1998) was, however, under-
taken before the calculations on the optimum
marker density given here had been performed.
There are now plenty of datasets from QTL studies
available, and a reanalysis of some of these using
alternative methods would be very valuable.

In conclusion, the chromosomal test is easy to
apply and has its optimum performance when
applied with a low density marker map. Significance
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thresholds are readily determined because the
number of independent tests equals the number of
chromosomes. Unlike interval mapping approaches,
the power of the test is maintained across a wide
range of models of genetic variation. Once genetic
variation has been detected, a denser marker map
and a variety of interval mapping or marker regres-
sion analysis methods can be used to dissect causa-
tion further. The chromosomal test provides a useful
additional tool to aid in the analysis of data from
QTL mapping studies.
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