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Further investigation on the regression
method of mapping quantitative trait loci

SHIZHONG XU*
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, U.S.A.

The simple regression method of mapping quantitative trait loci (QTL) is further investigated
in comparison with the mixture model maximum likelihood method under high heritabilities,
dominant and missing markers. No significant difference between the two methods is detected
in terms of errors of parameter estimation and statistical powers, with the exception that the
estimation of residual variance provided by the regression method is confounded with part of
the QTL variance. The test statistic profiles show some difference between the two methods,
but the difference is only detectable at the micro level. An alternative method, referred to as
iteratively reweighted least squares, is proposed, which can correct the deficiency of parameter
confounding in the regression method yet retains the properties of simplicity and rapidity of
the ordinary regression method. Like the existing regression method, the weighted least
squares method can be useful in QTL mapping in conjunction with the permutation tests and
construction of confidence intervals by bootstrapping.
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Introduction

Lander & Botstein (1989) presented an exact
maximum likelihood method (ML) for mapping
quantitative trait loci (QTL) in line crossing experi-
ments. When the putative position is off the
markers, the QTL genotype is actually not observed,
so the model involves missing data. Solutions of the
exact maximum likelihood method involving missing
data are usually obtained using the (Expectation–
Maximization) EM algorithm (Dempster et al.,
1977), which requires many cycles of iterations.
Haley & Knott (1992) discovered that the ML can
be well approximated by the simple regression
method (REG). The authors conducted extensive
computer simulations, showing no detectable differ-
ence between ML and REG in the range of param-
eters considered in the simulation experiment. A
similar argument is also found in Martinez &
Curnow (1992). As a consequence, the simple
regression method has become widely accepted,
especially in European countries, because of its
simplicity and convenience of use relative to the
ML.

Given that two methods are available for QTL
mapping, which method should be chosen for real

data analyses? For analysis of a single data set, it
does not matter which one is used because the two
methods will generate almost identical results. Some
researchers may want to avoid the word ‘approxima-
tion’ and choose ML, and others may prefer simpli-
city and thus choose REG. Xu (1995) recently found
that the residual variance estimated by the REG
method contains part of the QTL variance caused by
the uncertainty of QTL genotype. This observation
may alert users of the REG that the explanation of
the residual variance should be treated with caution.
However, the REG method is computationally so
superior to the ML that it may become the choice
for multiple data analyses, such as the permutation
tests (Churchill & Doerge, 1994) and the bootstrap
construction of confidence intervals (Visscher et al.,
1996). These nonparametric methods involve
thousands of analyses of the (resampled) same data
set and could be prohibitive for ML if the data set
and genome size are large.

The purposes of this paper are: (i) to investigate
further the difference between the REG and ML
methods via simulation studies in situations with
high heritabilities and dominant and/or missing
markers; and (ii) to improve the existing regression
method so that the pure environmental variance can
be separated from the residual variance, yet the
property of high computing speed is retained.*E-mail: xu@genetics.ucr.edu
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Statistical methods

Linear model

Let yj be the phenotypic value of an F2 individual
that can be described by the following linear model:

yj = xT
j b+zj a+wj d+e j, (1)

where xj is a known vector, b is a vector of unknown
fixed effects, a and d are, respectively, the average
effect of allelic substitution and the dominance
effect of a putative QTL, and e j is the residual error
with N(0,s2

e). Note that for a single-QTL model the
residual error is purely caused by uncontrollable
environmental noise. The independent variables, zj

and wj, are defined as:

+1 for Q1Q1

zj = 0 for Q1Q2

µ1 for Q2Q2

4
and

wj = G
+1 for Q1Q2

µ1 for Q1Q1 or Q2Q2,

where Q1Q1, Q2Q2 and Q1Q2 are, respectively, the
genotypes of the two parental lines and the F1

hybrid. Because the genotype of a QTL is not
observable if the QTL is not at a marker, zj and wj

are usually missing. However, the conditional distri-
bution of z and w can be inferred from the geno-
types of linked markers. Let p(kl)j be the conditional
probability that the individual is of genotype QkQl,
given marker information. Given the conditional
probabilities, yj is considered to be sampled from a
mixture of three distributions with means of m11, m12

and m22 and a common variance s2
e, where:

m11 = xT
j b+aµd, m12 = xT

j b+d

and m22 = xT
j bµaµd.

Statistical tests and parameter estimation are
conducted through one of the three methods
described below.

Maximum likelihood method (ML)

The likelihood function is:

L(h|y) = *
n

j=1

[p(11)jf11(yj)+p(12)jf12(yj)+p(22)j f22(yj)],

(2)

where fkl(yj) is the normal probability density for
those individuals with genotype QkQl. It is well
known that the maximum likelihood solution for the
unknown parameters, h = [b a d s2

e]T, can be solved
via the EM algorithm (Dempster et al., 1977). To
test the hypothesis that no QTLs are segregating, i.e.
H0: a = d = 0, the following likelihood ratio test
statistic is applied:

L = µ2 {log e[L(h 0 | y)]µlog e[L(h| y)]}, (3)

where h0 is different from h by introducing two
constraints, a = 0 and d = 0.

Simple regression method (REG)

The regression method of QTL mapping developed
by Haley & Knott (1992) and Martinez & Curnow
(1992) is an approximation of the ML method.
These authors approximate the mixture of three
distributions by a single distribution so that the ML
solution can be obtained by a simple regression
approach. The approximate single model is:

yj = xT
j b+E(zj | I M) a+E(wj | I M) d+ej, (4)

where IM denotes marker information and:

E(zj | IM) = (+1) p (11) j+(0) p (12) j+(µ1) p(22) j

and:

E(wj | IM) = (+1) p (12) j+(µ1) [p (11) j+p (22) j].

Note that the residual ej is different from that given
earlier. This single model has a mean of:

E(y j) = xT
j b+E(zj | IM) a+E(w j | IM) d

and a variance of:

Var(yj) = Var(e j) = s2
e.

The unknown parameters are solved using the ordi-
nary least squares method (Haley & Knott, 1992).
Under the assumption that yj is normal, the least
squares solutions are identical to the maximum like-
lihood estimators if the likelihood function is
defined by:

L(h| y) = *
n

j=1

f (yj). (5)

Two assumptions of the ML are violated by the
regression analysis. One is the normal distribution of
yj and the other is the homogeneous residual vari-
ance. Violation of the normal distribution is not a
problem with the regression method because estima-
tion of the parameter does not depend on a normal
distribution. Although the hypothesis test depends
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on the normal assumption, the t- or F-tests are
usually very robust. Heterogeneous residual variance
may cause a slight problem in the regression analysis
(Xu, 1995), but is not likely to change the results
qualitatively relative to the true ML analysis (Haley
& Knott, 1992). The difference between the true
ML and the regression method comes from the
difference in the estimation of the residual variance.
The regression method generally provides a residual
variance estimation that contains part of the QTL
variance not explained because of the uncertainty of
QTL genotype (Xu, 1995). The F-value can be used
as the test statistic for the simple regression method.
However, to compare this method with the ML, the
test statistic, originally used by Haley & Knott
(1992), is adopted here:

L = n log e(RSSreduced/RSSfull),

where RSSfull is the residual sum of squares of the
full model and RSSreduced is that of the reduced
model. This test statistic can be compared with that
given in eqn (3) because they are very similar under
the null hypothesis (see Table 5).

Iteratively reweighted least squares method
(IRWLS)

To retain the advantages of both the regression
method and the ML method, a weighted regression
method is investigated here. The mixture model is
still approximated by a single model (eqn 4), but the
residual variance is further partitioned into several
components:

Var(ej) = Var(zj | IM)a 2+Var(w j | IM)d 2

+2Cov(zjwj | IM)ad+s2
e, (6)

where Var(zj | IM)a 2 is part of the QTL variance not
explained because of the uncertainty of zj,
Var (wj | IM)d 2 is part of the QTL variance not
explained because of the uncertainty of wj, and
2Cov(zj wj | IM)ad is because of the uncertainty of
both zj and wj. All three additional components in
the residual will vanish if the genotype of the QTL is
actually observed, i.e. Var (zj | IM) = Var(wj | IM) =
Cov(zj wj | IM) = 0. These additional components are
computed as follows:

Var(zj | IM) = p (11) j[1µp (11) j]+p (22) j [1µp (22) j]

+2p (11) jp (22) j,

Var (wj | IM) = 4p (12) j[1µp (12) j]

and:

Cov(zj wj | IM) = p (22) j[1µp (22) j]µp (11) j[1µp (11) j]

+p (12) j p (22)jµp (12) j p (11) j.

Let y be an nÅ1 vector of the data. The model can
be expressed in matrix notation as:

y = X b+Z a+W d+e (7)

where Z is an nÅ1 vector with the j th element
equal to E(zj | IM), W is an nÅ1 vector with the j th
element equal to E(wj | IM), and e is an nÅ1 vector
of residuals. The expectation and variance matrix of
the model are:

E(y | IM) = X b+Z a+W d

and:

Var(y | IM) = Var(e) = Rs2
e,

where R is a diagonal matrix with the jj th element
equal to:

Rjj = Var(zj | IM)la+Var(wj | IM)l d

+2Cov(zjwj | IM)l ad+1 (8)

and:

l a = a 2/s2
e, l d = d 2/s 2

e and l ad = ad/s 2
e.

The likelihood function is:

L(h| y) = (s 2
e)µ1/2n | R | µ1/2 Exp

ÅGµ
1

2s2
e
(yµXbµZaµWd)TRµ1(yµXbµZaµWd)H.

(9)

The ML solution can be solved via a weighted least
squares approach which is described below.

Given an initial guess of the values of l a, l d and
l ad, matrix R is treated as known. Under the
pretence of known R, the solution of h can be easily
obtained via the weighted regression analysis:

b

a

dC D
XTRµ1X XTRµ1Z XTRµ1W

µ1

= ZTRµ1X ZTRµ1Z ZTRµ1W

WTRµ1X WTRµ1Z WTRµ1WC D
XTRµ1y

Å ZTRµ1y (10)
WTRµ1yC D

and:

s 2
e =

1

n
(yµXbµZaµWd )TRµ1(yµXbµZaµWd ).

(11)

366 S. XU

© The Genetical Society of Great Britain, Heredity, 80, 364–373.



Because R depends on unknown parameters, it
must be updated by the estimates of a, d and s2

e, and
the estimation is then repeated until convergence.
This algorithm is extremely fast — only two to three
cycles of iteration are required, in contrast to
80–100 iterations in the EM algorithm at the same
accuracy. The likelihood ratio test statistic, L, is
applied to the weighted regression analysis.

Dominant and missing markers

The missing marker problem can be solved easily. A
missing marker should be skipped over and the
nearest nonmissing markers are picked up. Domi-
nant markers provide partial information which is
extracted by using a hidden Markov model algo-
rithm. Details of the hidden Markov model are
found in Lander & Green (1987) and Kruglyak et al.
(1995).

Simulation studies

Eleven equally spaced markers were simulated on a
single chromosome segment of length 100 cM. A
single QTL was located at position 25 cM. The
population size (number of F2 individuals) was set at
300. Under the null model, the QTL was assigned a
value of zero for both the additive and dominance
effects. Simulations were repeated 1000 times and
the 95 and 99 percentiles of the test statistics were
chosen as the empirical critical values for power
calculation. Under the alternative model, a nonzero
additive effect was simulated while the dominance

effect was still set to zero. Simulations were
repeated 100 times. Empirical power was calculated
by counting the number of runs in which test statis-
tics were greater than the empirical critical values.
In all simulations, the variance of the environmental
effect was set at s2

e = 1.0.
Each data set was analysed using the three

methods: the exact maximum likelihood method
(ML), the simple linear regression analysis (REG)
and the iteratively reweighted least squares method
(IRWLS). Powers and estimation errors of the three
methods were compared, based on averages of 100
runs.

Factors considered include the size of the QTL
effect, measured by the average effect of gene
substitution (a), and the amount of marker informa-
tion. The average effect of gene substitution was
examined at three levels: a = 0.324 leading to
h2 = 0.05; a = 0.820 resulting in h2 = 0.25 and
a = 1.155 corresponding to h2 = 0.40. The amount of
marker information was investigated in four situa-
tions: (i) all markers codominant and no missing
markers, the highest level of marker information
content; (ii) 50 per cent loci in the F1 parent
randomly set to dominant and no missing markers in
the offspring; (iii) 50 per cent loci in the F2 offspring
randomly set to missing values; and (iv) 50 per cent
loci in the parent dominant and 50 per cent loci in
the offspring missing, the lowest level of marker
information content.

Average values of the estimated parameters and
their standard deviations calculated based on 100
replicated simulations are listed in Tables 1–4. The

Table 1 Comparison of three methods of QTL mapping via Monte Carlo simulations. All markers are codominant and
there are no missing values. Parametric values not listed in the table are: QTL position (cMA) = 25 cM, d = 0 and s 2

e = 1.0.
Results are averages of 100 replicated simulations with the standard deviations over the replicates given in parentheses

Estimate

a h2 â d̂ ĥ2 cM̂A ŝ2
e

0.324 0.05 ML 0.345(0.095) µ0.005(0.084) 0.062(0.030) 25.16(9.31) 0.981(0.079)
REG 0.347(0.098) µ0.002(0.086) 0.062(0.031) 25.45(10.6) 0.988(0.078)
IRWLS 0.347(0.096) µ0.005(0.085) 0.063(0.031) 25.36(9.65) 0.980(0.079)

0.820 0.25 ML 0.851(0.089) 0.001(0.065) 0.269(0.047) 25.07(3.11) 0.997(0.091)
REG 0.852(0.089) 0.001(0.066) 0.263(0.044) 25.28(3.14) 1.027(0.089)
IRWLS 0.851(0.088) 0.001(0.065) 0.268(0.046) 24.97(2.87) 0.998(0.091)

1.155 0.40 ML 1.17(0.068) 0.000(0.072) 0.407(0.043) 24.77(1.91) 1.005(0.078)
REG 1.17(0.089) 0.000(0.071) 0.393(0.042) 24.79(2.08) 1.065(0.079)
IRWLS 1.17(0.089) µ0.001(0.071) 0.406(0.045) 24.75(1.95) 1.008(0.079)

IRWLS, iteratively reweighted least squares method.
REG, simple regression method.
ML, maximum likelihood method.
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three methods show virtually no difference with
regard to parametric estimation of the additive
effect (a), dominance effect (d) and the location of
the QTL (cMA), which is consistent with Haley &
Knott (1992) for the comparison of ML and REG.
Another observation is that when both marker infor-
mation content and the heritability are low, estima-
tion of the QTL position tends to be biased towards
the centre of the chromosome for all three methods.
This bias occurs because, with smaller QTL effects
and less marker information, some of the QTL
peaks found may represent, not the simulated QTL
but, a Type I error. The position of these Type I
errors tends to be randomly distributed along the
linkage group; thus the mean position of Type I

errors is at the centre of the chromosome and their
joint effect, along with some real QTL, is to move
the estimated position over all simulated replicates
towards the centre of the chromosome. The last, and
important, observation is that the simulations verify
the theoretical prediction that the simple regression
provides a confounded estimation of the true re-
sidual variance and part of the QTL variance. The
level of confounding increases as the marker infor-
mation content decreases (from Table 1 to Table 4).
The confounding, however, no longer exists in the
IRWLS method (see the comparison with ML).

The empirical critical values based on 1000
repeated simulations are given in Table 5, showing
very little difference between the three methods.

Table 2 Comparison of three methods of QTL mapping via Monte Carlo simulations. There are 50 per cent dominant
markers with no missing values. Parametric values not listed in the table are: QTL position (cMA) = 25 cM, d = 0 and
s 2

e = 1.0. Results are averages of 100 replicated simulations with the standard deviations over the replicates given in
parentheses

Estimate

a h2 â d̂ ĥ2 cM̂A ŝ2
e

0.324 0.05 ML 0.343(0.084) µ0.006(0.069) 0.061(0.027) 26.81(15.19) 0.975(0.086)
REG 0.342(0.084) µ0.004(0.071) 0.060(0.027) 26.44(15.32) 0.980(0.086)
IRWLS 0.344(0.084) µ0.007(0.068) 0.061(0.027) 26.05(15.06) 0.975(0.086)

0.820 0.25 ML 0.850(0.082) µ0.003(0.065) 0.268(0.041) 25.43(3.32) 0.994(0.086)
REG 0.853(0.087) µ0.003(0.068) 0.261(0.041) 25.34(3.63) 1.036(0.088)
IRWLS 0.851(0.084) µ0.003(0.067) 0.269(0.042) 25.41(3.41) 0.994(0.085)

1.155 0.40 ML 1.19(0.087) 0.008(0.065) 0.418(0.045) 24.87(2.03) 0.989(0.080)
REG 1.20(0.099) 0.008(0.070) 0.403(0.045) 24.94(1.93) 1.070(0.083)
IRWLS 1.19(0.096) 0.009(0.071) 0.419(0.049) 24.97(2.10) 0.989(0.083)

Table 3 Comparison of three methods of QTL mapping via Monte Carlo simulations. All markers are codominant and
there are, on average, 50 per cent missing markers. Parametric values not listed in the table are: QTL position
(cMA) = 25 cM, d = 0 and s 2

e = 1.0. Results are averages of 100 replicated simulations with the standard deviations over
the replicates given in parentheses

Estimate

a h2 â d̂ ĥ2 cM̂A ŝ2
e

0.324 0.05 ML 0.355(0.099) µ0.011(0.091) 0.066(0.032) 27.95(17.53) 0.989(0.078)
REG 0.357(0.098) µ0.009(0.092) 0.065(0.031) 27.98(16.56) 1.003(0.079)
IRWLS 0.355(0.099) µ0.011(0.092) 0.065(0.032) 28.41(17.48) 0.989(0.079)

0.820 0.25 ML 0.870(0.096) µ0.010(0.068) 0.278(0.049) 25.41(3.71) 0.991(0.094)
REG 0.875(0.095) µ0.013(0.073) 0.267(0.044) 25.46(3.91) 1.060(0.091)
IRWLS 0.871(0.095) µ0.012(0.072) 0.279(0.048) 25.31(3.63) 0.991(0.093)

1.155 0.40 ML 1.19(0.097) µ0.002(0.062) 0.413(0.051) 24.95(2.52) 1.013(0.099)
REG 1.20(0.101) µ0.003(0.072) 0.386(0.044) 25.17(2.53) 1.150(0.096)
IRWLS 1.19(0.099) µ0.003(0.071) 0.412(0.051) 25.04(2.59) 1.017(0.098)
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These critical values, however, are different across
different levels of marker information contents. The
highest critical values occur when all markers are
codominant and there is no missing marker. These
empirical critical values are then used to compute
the empirical statistical powers for the three
methods (see Table 6). Again, the three methods
have virtually identical statistical powers.

To view the details of the comparison of the three
methods, the likelihood ratio test statistics of the
three methods are plotted against the chromosome
position. Figure 1 shows the likelihood ratio profiles
(average of 100 runs) at three levels of heritability in
the situation where 50 per cent of the marker loci in
the offspring are missing. The IRWLS method is
nearly indistinguishable from the ML method, and
both methods have higher testing signals than the
REG method. Figure 1(a–c) also shows that the
difference between ML (IRWLS) and REG
increases as the heritability increases. When the
heritability is fixed at 0.25, the likelihood ratio

profiles (average of 100 runs) of the three methods
are compared at each of the four levels of marker
information content. Again, IRWLS and ML are
virtually identical but both are different from that of
the simple regression method. When all markers are
codominant and there is no missing marker, the test
statistics of the three methods are identical at
marker loci but different off the markers. The
ML(IRWLS) curves shows significant discontinuity
at marker loci (Fig. 2a). When 50 per cent of the
marker loci are dominant and there is no missing
marker, the discontinuity of the ML (IRWLS) still
exists but becomes less obvious (Fig. 2b). The test
statistics of the ML (IRWLS) at the marker loci are
now different from those of the REG. As the
marker information content decreases, the disconti-
nuity of ML (IRWLS) disappears (Fig. 2c,d).

In conclusion, ML and IRWLS show no differ-
ence but both differ from REG. However, the differ-
ence is only detectable at the micro level. The
advantage of ML and IRWLS over the REG is that

Table 4 Comparison of three methods of QTL mapping via Monte Carlo simulations. There are, on average, 50 per cent
dominant and 50 per cent missing markers. Parametric values not listed in the table are: QTL position (cMA) = 25 cM,
d = 0, and s 2

e = 1.0. Results are averages of 100 replicated simulations with the standard deviations over the replicates
given in parentheses

Estimate

a h2 â d̂ ĥ2 cM̂A ŝ2
e

0.324 0.05 ML 0.345(0.115) µ0.010(0.108) 0.066(0.039) 30.24(20.06) 0.973(0.089)
REG 0.345(0.116) µ0.007(0.105) 0.063(0.037) 29.81(18.28) 0.997(0.083)
IRWLS 0.342(0.115) µ0.008(0.104) 0.064(0.037) 30.01(19.66) 0.975(0.086)

0.820 0.25 ML 0.877(0.114) µ0.008(0.095) 0.284(0.059) 25.00(4.68) 0.983(0.089)
REG 0.883(0.117) µ0.005(0.101) 0.268(0.053) 24.70(4.93) 1.078(0.087)
IRWLS 0.877(0.116) µ0.008(0.099) 0.284(0.059) 25.09(4.66) 0.985(0.089)

1.155 0.40 ML 1.214(0.103) µ0.005(0.060) 0.430(0.049) 24.72(3.82) 0.977(0.090)
REG 1.242(0.116) 0.003(0.079) 0.403(0.046) 24.85(3.62) 1.146(0.106)
IRWLS 1.227(0.112) 0.005(0.077) 0.437(0.057) 24.76(3.85) 0.970(0.100)

Table 5 Empirical critical values of the test statistic for testing the presence of a
QTL on a chromosome of length 100 cM

95 per cent 99 per cent

ML REG IRWLS ML REG IRWLS

Codominant markers 10.52 10.49 10.60 15.85 15.79 15.95
Dominant markers 9.98 9.92 10.04 13.50 13.41 13.63
Missing markers 9.73 9.70 9.77 12.99 12.75 13.07
Missing and dominant 9.75 9.96 9.77 13.08 14.10 13.07
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they provide a true estimate of s 2
e. The ML,

however, is many times slower than REG because
many cycles of iterations (280) are required for the
EM algorithm to converge. In contrast, the IRWLS
algorithm only requires two to three cycles of itera-
tions to converge, about two or three times slower
than the REG but 30–40 times faster than the ML.
Of course, the comparisons in computing speed are
based on the algorithms adopted here in this
particular research. If other algorithms had been
used, such as the Newton–Raphson iteration for the
ML and the regression on marker-type algorithm
(Whittaker et al., 1996) for the REG, the compari-
sons would produce quantitatively different results,
but the conclusion is not anticipated to change
qualitatively.

Discussion

In an earlier paper (Xu, 1995) it was pointed out
that estimation of the residual variance with the
simple regression method is confounded by part of
the QTL variance. A simple way was also provided
to separate the confounding variances in a backcross
design. However, simply correcting the estimated
residual variance does not necessarily correct the
difference in test statistic between the REG and
ML. The improved regression method (IRWLS)
corrects both deficiencies yet retains the simplicity
and rapidity of the regression method. With the
current improvement, the regression method can
now be safely applied to all data analyses without
any concerns.

The (revised) regression method is particularly
useful for permutation tests (Churchill & Doerge,
1994) and construction of confidence intervals by
bootstrapping (Visscher et al., 1996) because
thousands of analyses of resampled data sets are
required. In addition to its simplicity and speed
allowing resampling and permutation, the regression
method has another major strength that makes it
very valuable for use on real data: it can be used to
fit relatively complex models and thus include
multiple or interacting QTL effects. The weighted
regression method retains this strength of regres-
sion. If the distribution of residual error is known,
the ML is optimal. In some situations, the distribu-
tion is unknown and normality is only an approxima-
tion, so the ML is also an approximate method. In
contrast, REG and IRWLS are independent of the
distribution of the residual error. Combined with the
permutation test, the regression methods are
actually nonparametric methods which may be
applied to a wider range of data.

The significant discontinuity of the likelihood
ratio profiles at fully informative markers is a draw-
back of the ML and IRWLS compared with the
REG. The peaks within marker intervals have a
clear pattern, that is they all face in the direction
where the true QTL resides. The strong disconti-
nuity is analogous with linkage analysis (of markers),
where the likelihood ratio of zero recombination can
show very strong discontinuity (to minus infinity) at
a marker once one or more recombination events
have been observed, because the probability that the
two markers are fully linked is zero. The difference

Table 6 Empirical powers of three methods for QTL detection under various
situations. a is the Type I error rate

a = 0.05 a = 0.01

Marker h2 ML REG IRWLS ML REG IRWLS

Codominant 0.05 0.82 0.82 0.82 0.62 0.62 0.62
0.25 1.00 1.00 1.00 1.00 1.00 1.00
0.40 1.00 1.00 1.00 1.00 1.00 1.00

Dominant(D) 0.05 0.81 0.80 0.80 0.53 0.52 0.52
0.25 1.00 1.00 1.00 1.00 1.00 1.00
0.40 1.00 1.00 1.00 1.00 1.00 1.00

Missing (M) 0.05 0.79 0.79 0.79 0.49 0.48 0.49
0.25 1.00 1.00 1.00 1.00 1.00 1.00
0.40 1.00 1.00 1.00 1.00 1.00 1.00

Missing and 0.05 0.68 0.67 0.68 0.38 0.37 0.38
dominant 0.25 1.00 1.00 1.00 1.00 1.00 1.00

0.40 1.00 1.00 1.00 1.00 1.00 1.00

370 S. XU

© The Genetical Society of Great Britain, Heredity, 80, 364–373.



between quantitative change and qualitative change
can also explain the discontinuity. When the putative
QTL position is off the markers, all three genotypes

of the QTL are possible so that the population
actually has a mixture of three distributions, no
matter how likely a particular genotype is (e.g. 0.999).

Fig. 1 Comparison of the likelihood ratio profiles (test statistics) of three methods, maximum likelihood (ML), simple
regression (REG) and iteratively reweighted least squares (IRWLS). Eleven codominant markers (with a 50 per cent
chance of missing) are equally spaced along a chromosome of 100 cM. A single QTL resides at position 25 cM. (a)
Variation explained by the QTL is 0.05; (b) variation explained by the QTL is 0.25; (c) variation explained by the QTL is
0.40.
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When the putative position moves to a marker locus,
the genotype is actually observed so that the popula-
tion has a single distribution. The observed genotype

has occurred with probability 1.0. The difference
between 0.999 and 1.0 is a qualitative change,
whereas the change from 0.998 to 0.999 is a quanti-

Fig. 2 Comparison of the likelihood ratio profiles (test statistics) of three methods, maximum likelihood (ML), simple
regression (REG) and iteratively reweighted least squares (IRWLS). Eleven markers are equally spaced on a chromosome
of 100 cM. A single QTL explaining 25 per cent of the phenotypic variation resides at position 25 cM. (a) All markers
codominant and no missing markers; (b) 50 per cent of the markers dominant and no missing markers; (c) 50 per cent of
the markers missing; (d) 50 per cent dominant and 50 per cent missing markers.
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tative change. The ML and IRWLS methods are
extremely sensitive to the qualitative change,
whereas the REG method does not distinguish
between the two types of change.

It should be noted that the test statistic for the
weighted least squares method (IRWLS) cannot be
chosen as the reduction of the weighted residual
sum of squares. This is in contrast to the simple
regression method, where the QTL location is
chosen at the position with the minimum residual
sum of squares. The residual sum of squares for the
IRWLS method is:

RSS = (yµXbµZaµWd)TRµ1(yµXbµZaµWd)

which can be made as small as possible by increasing
the values of the diagonal elements of R. The diago-
nal elements, however, are proportional to the
uncertainty of the genotype of a putative position,
i.e. the variance of the independent variables, zj and
wj, as seen in eqn (8). The uncertainty, nonetheless,
takes its maximum value at a position with minimum
information content, in the middle of an interval.
Therefore, the estimated QTL position will be
biased towards the centre of an interval if RSS is
used as the test statistic. Therefore, the likelihood
ratio has been chosen as the test statistic in this
paper. However, other test statistics might be more
appropriate, and this deserves further investigation.
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