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The genetic correlation between a character in two environments is of considerable interest in
the context of plant and animal breeding for the prediction of evolutionary trajectories and for
the evaluation of the amount of genetic variance maintained at equilibrium in subdivided
populations. The two-way analysis of variance with genotype and environment as crossed
factors is the usual basis for estimating this genetic correlation. In plasticity experiments, the
genetic variance can differ widely between environments, for instance when the variance
component associated with the genotype—environment interaction is not constant over environ-
ments. When this is the case, the assumption of homoscedasticity is violated, and the anova
method tends to underestimate the absolute value of the genetic correlation. To solve this
problem, a variance-stabilizing transformation previously applied in a multivariate anova
context was developed. This development resulted in a new procedure (method 3), in which
the genetic correlation is estimated from the transformed data (i.e. after among-environment
heteroscedasticity is removed, while the within-environment means are maintained). In a
simulation study and an analysis of Chlamydomonas reinhardtii growth rate data, we compared
method 3 with two existing methods in which the genetic correlation is estimated from the raw
data. Method 1 uses one ‘global’ variance component associated with the genotype—environ-
ment interaction, and method 2 uses two variance components associated with the genotype
and obtained from one-way anovas conducted separately in the two environments. Under
increasing among-environment heteroscedasticity, method 1 produces increasingly biased
genetic correlation estimates, whereas method 3 almost consistently provides accurate esti-
mates; the performance of method 2 is intermediate, with more estimates out of range or
indeterminate. This is the first demonstration that a variance-stabilizing transformation of the
data removes the bias in the estimation of genetic correlation caused by among-environment
heteroscedasticity, while allowing valid statistical testing in an ANova-based approach.
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Introduction

Organisms allowed to develop in different environ-
ments typically show phenotypic plasticity (e.g. Via,
1993; Schlichting & Pigliucci, 1995). A central idea
in the evolution of phenotypic plasticity is that a
character measured in different environments may
represent character states that are more or less
correlated genetically (Falconer, 1952; Via & Lande,
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1985). Therefore, selection on a trait in a particular
environment may affect this trait differently when
the selected population is raised in another
environment.

Selection gradients and additive genetic variances
and covariances have been used in equations to
predict the evolutionary trajectory of character
states (Via & Lande, 1985). The square root of the
heritability of character states and their genetic
correlation can be used equivalently in such equa-
tions (Falconer, 1989; Grant & Grant, 1995). More-
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over, genetic correlation is a dimensionless
descriptor of the state of populations (Houle, 1992)
that can be used to compare the evolutionary poten-
tial of different character states (e.g. Fry et al,
1996). The genetic correlation between character
states is of considerable interest, therefore, in the
context of plant and animal breeding, especially
when the selective environment differs from the
environment in which the improved population will
live. It also provides information on the rate at
which optimum phenotypes are attained under
disruptive selection in a spatially variable environ-
ment and on the amount of genetic variance main-
tained at equilibrium in the improved population
(Via & Lande, 1985, 1987; Bell, 1992).

The two-way anova with genotype (e.g. clones or
sib-groups) and environment as crossed factors is
the usual basis for the estimation and significance
testing of the genetic correlation (Robertson, 1959;
Yamada, 1962; Fry, 1992). The standard method
using variance components associated with the geno-
type and the genotype—environment interaction is
based on the assumption that the genetic variance
(i.e. the variance computed among the genotypic
means) is constant over environments (Yamada,
1962, p. 504). A common finding in plasticity experi-
ments, however, is that the environment affects both
the genetic architecture of populations (i.e. the
genetic variances and covariances) and the pheno-
typic expression of genotypes (e.g. Gebhardt &
Stearns, 1988; Bell, 1991; Simons & Roff, 1996).
Consequently, the usual two-way anNova approach
tends to underestimate the absolute value of the
genetic correlation between character states when
the variance component associated with the geno-
type—environment interaction differs between
environments (Yamada, 1962, pp. 504-505). To
correct for the bias, the genetic correlation has been
estimated with modified formulae (Yamada, 1962, p.
505; Bell, 1990, pp. 306-307). Because the F-ratio
test of the correlation is no longer valid, the execu-
tion of separate one-way ANOvas in each environ-
ment, followed by the use of the resulting variance
components associated with the genotype in the esti-
mation of the genetic correlation, has been recom-
mended by some without further justification (Via,
1984; Fry, 1992, p. 543).

In the aNova approach to the study of phenotypic
plasticity, Dutilleul & Potvin (1995) developed
various data transformations to remove the statisti-
cal nuisance of the among-environment heterosce-
dasticity or that of genetic autocorrelation (i.e. when
the responses expressed by the same genotype in
two different environments are more similar or

dissimilar than two randomly associated values), or
both. One of their recommendations was to apply
the transformation that removes heteroscedasticity,
while taking autocorrelation into account by modi-
fied F-testing. The authors suggested (p. 1818) that
further investigation was needed before using their
transformation in the context of genetic correlation
analysis. The present paper develops and validates
the variance-stabilizing transformation of Dutilleul
& Potvin (1995) in that context. First, we define a
new version of the transformation. Secondly, the
resulting method of genetic correlation estimation
based on two-way anova of the transformed data is
compared theoretically with the standard method
and that based on separate one-way aNovas in each
environment, both performed on the raw data.
Thirdly, the accuracy and precision of the three
methods are compared in a simulation study, in
which the bias and variance of the genetic correla-
tion estimates are analysed in relation to the level of
among-environment  heteroscedasticity and the
number of replicates per genotype and environment.
Fourthly, the methods are applied to Chlamydomo-
nas reinhardtii growth rate data published by Bell
(1991). Finally, the discussion is extended to other
methods that were not studied further because of
their lack of generality or poor performance follow-
ing preliminary results.

The mixed two-way analysis-of-variance
model

Following Fry (1992) and Dutilleul & Potvin (1995),
the genotype and environment factors are
considered random and fixed, respectively; this
allows the expected value (i.e. the theoretical mean)
of the phenotypic response to differ among environ-
ments. The model parameters are those of the ‘sas
model’, in which the genotype variance component
represents the variance of the genotype main effects,
and not of the ‘Scheffé model’, in which that vari-
ance component is the variance of the genotypic
means. The sas model is recommended for its
natural application for estimating the genetic corre-
lation and testing whether it differs from zero (Fry,
1992).

In a standard plasticity experiment, the pheno-
typic response of replicate k (k=1, ..., r;) of geno-

type i (=1, ..., n) in environment j (j=1, ..., p)
can be expressed as
Kjk=M+Gi+ej+Geij+8ijka (1)

where u is the intercept; G;, e, and Ge; are the
deviations attributable to genotype i and environ-
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ment j and the interaction between them, respec-
tively; and the e, are residual deviations of
microenvironmental and individual nature. Whereas
u+e;=q; represents the expected value of the
response of an individual in environment j, the other
terms are all considered to be normally distributed
with an expected value of 0 and a given variance
component: ¢ for G, a¢, for Ge; under among-
environment homoscedasticity, and o’ for the error
term. Under among-environment heteroscedasticity,
the variance of the interaction term, Ge;, may
change from environment to environment, so there
may be as many variance components as there are
environments: a¢,; =1, ..., p).

When replicates follow from the replication of the
np genotype—environment combinations in different
growth chambers, as in the Chlamydomonas example
considered here, it is justified to define profile
vectors of repeated measures on the same genotype

within a growth chamber, ys = (Y;i, ..., Yjx), and to
consider the following p-variate model:
Y = m+G; + ey, (2)

where m = (u+e;, ..., p+e,), G=(Gi+Gey, ...,
G;+Ge;,) and e = (&1 ..., &x); the last term would
incorporate the growth chamber effects. In model
(2), m is the mean vector of the profile vectors yj,
whereas the variances of and the covariance between
the phenotypic responses of genotype i in environ-
ments j and j' (j#j') are given by og+0g,+0r,
66+0g.+0r, and ag, respectively. The variance—
covariance structure of the genotypic profiles y; can
be described by two variance—covariance matrices,
Y and X,. The diagonal entries of X; are given by
66+0g,; (=1, ..., p), and the off-diagonal ones
are the genetic autocovariances (i.e. the genetic
correlations multiplied by the square root of the
product of the corresponding variances). Matrix Xs
can be decomposed as the product of the diagonal
matrix with entries 6g+0&,; (j=1, ..., p) and the
genetic autocorrelation matrix, X, , with unit diago-
nal entries and off-diagonal entries equal to r,o. The
variance—covariance structure among replicates is
assumed to be spherical (i.e. there is independence
and homogeneity of variances among replicates):
¥, =0, I, where I, is the p xp identity matrix. The
multivariate model (eqn 2) and its assumptions
listed above are used in the simulation study.

When the np genotype—environment combina-
tions are replicated in a completely random way (i.e.
there are no ‘blocks’ like growth chambers), the
experimental unit for repeated measurements is the
genotype. However, because there is then no link
among replicates, the multivariate model applies to
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the genotypic mean profiles f} = (4, ..., ﬁ-p), where
ﬁ»j denotes the mean response computed across the
r; replicates available for the genotype—environment
combination (i, j) (Dutilleul & Potvin 1995).

The three estimation methods

All three methods are based on the following equa-
tion written under the SAS model (eqn 1):
0,2
e = 2 2 : 2 2 ) 3)
V(@G+08)(05+08)

To estimate the variance components involved in
the calculation of the genetic correlations, we wrote
a computer program (PLASTIC) using the sas/iML
language (SAS Institute Inc., 1988). For each of the
three methods, the program implements a procedure
equivalent to the varcomp procedure, option type I
(SAS Institute Inc., 1989), in which the variance
component estimates are solutions of the system of
expected mean squares given in response to the
RANDOM statement. The data generated in the simu-
lation study and the real data used in the example
are balanced (i.e. the number of replicates is the
same for all nmp genotype—environment combina-
tions: r;=r for i=1, ..., n; j=1, ..., p), so the
argument of bias put forward by Fernando et al.
(1984) does not apply here.

Method 1

Under model (1) with p =2, one ‘global’ variance
component associated with the genotype—environ-
ment interaction is computed over environments j
and j', that is 6&,;=0¢.; =0g in eqn (3). There-
fore, this method is strictly valid only in the homo-
scedastic case. The same holds true for testing, when
the significance of the genetic correlation is assessed
with an F-ratio test based on the genotype mean
square divided by the genotype—environment inter-
action mean square (Fry, 1992, p. 542); the denomi-
nator would tend to be overestimated with
heteroscedastic data, resulting in a lack of power of
the test (Yamada, 1962).

Method 2

Fry (1992, p. 543) briefly mentioned that, under
among-environment heteroscedasticity (i.e.
OGej#0Geys J#]'), it is preferable first to estimate
the variance components associated with the geno-
type in one-way ANovas performed on the raw data
in the two environments separately, and then to use
the resulting variance component estimates under
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the square root in eqn (3). Via (1984) had already
considered such an estimation procedure without
real justification and labelled it ‘method 2’.

The justification for this procedure is the follow-
ing. Using eqn (1) and rewriting it explicitly for
environments j and j’ (e.g.j =1 and j’ = 2) provides

Yiu = u+Gi+e +Gei+ €1,
Yi2k = ,U+G,'+€2+G€,-2+8,-2k‘

Grouping then the terms that do not depend on i
(i.e. u, ey, e,), those that depend on i only (i.e. G,
Ge;y, Ge,,), leaving the last term depending on i and
k (i.e. &, &), results in

Yike=wm+Ga" +eu
Yir = to+Gio' + €

The variance components associated with G;;- and
G,» are those that need to be estimated (i.e.
06+0%.1 and 6G+0¢,.). Clearly, the estimation of
negative or zero variance components is a limiting
factor for method (2) because of the square root in
eqn (3). Furthermore, there is no test because the
denominator of the eventual F-ratio is a mixture of
variance components estimated from correlated
data.

Method 3

Yamada (1962) stated that ‘the standard two-way
analysis [of variance] is no longer valid [for estimat-
ing genetic correlations] unless some transformation
to make homogeneous variances is made’. Accord-
ingly, Dutilleul & Potvin (1995) proposed a trans-
formation in which the genetic variance of the
transformed data was fixed to 1.0 in each environ-
ment, while mentioning (p. 1818) that it may be
justified to scale the genetic variances to a common
value other than 1.0; in all cases, the transformation
maintains the within-environment means. The
version considered here for the analysis of genetic
correlations uses the geometric mean of the genetic
variances of environments j and j’ as common
genetic variance after transformation. The basis for
that choice is that the denominator in eqn (3) is, by
definition, the geometric mean of the variances
066+0g.,; and oG+0g,y. Using the geometric mean
of the two variances in the transformation therefore
produces equality between the two terms under the
square root in eqn (3), while maintaining their
product equal to (06+066,)(66+06.,). The
properties of our transformation (i.e. the means are
maintained and the variances made homogeneous
are fixed to an intermediate value) are illustrated in

Fig. 1, using the data from two environments with
extreme variances in the Chlamydomonas example.

If X denotes the sample covariance matrix esti-
mated from the genotypic mean profiles (Dutilleul
& Potvin 1995, p. 1817), the new transformation can
be defined by

zik(l) = EH_ ageom {diag(zjj')}_&5 (yik_&l)’ (4)
where ] is the overall sample mean vector computed
overyx (i=1,...,n;k=1, ..., r), Beom denotes the
positive square root of the geometric mean of the
genetic variances of environments j and j', X;- is the
2 x 2 submatrix of X corresponding to environments
j and j'; and diag and *° denote the diagonal and
square root operators of matrix algebra respectively
(Graybill, 1983); other notations are as in eqn (2).
Method 3 uses eqn (3) with the data transformed
after eqn (4), for which 6¢, ;= 0¢., = ¢, because
the data so transformed are homoscedastic (Fig. 1).
As the genetic variances involved in the geometric
mean in eqn (4) are diagonal entries of the X matrix,
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variance: 0.11105
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421 fean: 3.54850

44 variance: 0.01937

3.8 mean: 3.18859

3.6 variance: 0.01937

3.4
3.2

2.8

T T
2 3
Environment

Genotype mean response per environment

Fig. 1 Mean responses of 12 genotypes in environments
two and three of the Chlamydomonas example (Bell,
1991) (a) before and (b) after among-environment hetero-
scedasticity was removed by data transformation. The
means and variances reported are those calculated over
the genotypes within each environment. The genetic
correlation estimate, r,, reported in (a) is that provided by
method 1, and the one reported in (b) is that of method 3.
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they are inflated by the error variance; this is
analogous to the contamination of the product—
moment correlation of genotypic means. The
contaminating term is o> divided by r, so the higher
the number of replicates, the less the contamination
(Via, 1984; Roff & Preziosi, 1994). To provide a
method also valid in small samples, we developed an
adjustment for the inflation by subtracting the error
mean square divided by r from each of the two
genetic variances before computing the geometric
mean in eqn (4). The simulation study will show if
this adjustment is effective. Method 3 should then
allow valid F-ratio testing based on the genetic
correlations estimated on the transformed data,
whatever the sample size.

The simulation procedure

Equation (2) was used for simulation with r; =r for
any (i, j). The simulation parameters were the theo-
retical genetic correlation, 7, (i.e. the genetic corre-
lation generated in the data and expected from the
correct estimation method), the number of repli-
cates per genotype and environment, r, and the level
of among-environment heteroscedasticity. The
reo-values considered were —1.0, —0.5, 0.0, 0.5 and
1.0. The numbers of replicates were 2, 4 and 8. The
heteroscedastic pattern considered among eight
environments (i.e. p = 8), as there are eight environ-
ments in the Chlamydomonas example is defined by
0(‘—02 and 0'(«8]—001(17-1-1—]) (]—1 e
p=238), so that a(,—i—o(,ej ranges from 0.21 to 532
When the number of environments had to be
decreased to three in order to ensure that X, ~was
positive semidefinite so that its square root existed,
the three aée,j-values considered were 0.01, 0.2263
(the geometric mean of the other two) and 5.12;
when p=2, only the two extreme values were
retained. Such ratios of ¢g+0¢,, fall within the
range of values observed in other studies (e.g. Bell,
1991; A. R. Aldous, P. Dutilleul and M. J. Water-
way, unpubl. manuscript).

The multivariate intercept m was maintained the
same for all simulation runs, whatever the values of
the simulation parameters; it was fixed to 5+0.5
exp [0.25 p+1—j)] (j=1, ..., p), in order to mimic
the decreasing pattern in the phenotypic response of
log relative growth rate over environments in the
Chlamydomonas example (Dutilleul & Potvin, 1995).
Also, the number of genotypes, n, was 12 and the
error variance, o, was 0.6 (i.e. a2/ =3.0) for all
simulation runs.

Model (2), with the covariance matrices X; and
Y, allows the simulation of genetic correlations of
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any sign and size for any among-environment vari-
ance—covariance pattern. Given an intercept m, a set
of 6&+0¢.; (j =1, ..., p), a genetic autocorrelation
matrix ¥, and an error variance ¢, a profile vector
yi can then be simulated as follows:

Y = m + dlag (\/Gé + O'%;g,j) ng,() 03 € + 0. €, (5)

where e; and e, are two p-variate vectors of pseudo-
random numbers from a standard normal distribu-
tion with zero mean and unit variance (SAS Institute
Inc., 1990; function RANNOR); other notations are as
in eqn (4).

For a given set of simulation parameters, the
empirical bias of the genetic correlation estimates
was calculated for each method as the sample mean
of the estimated values minus the theoretical value
r.0; the empirical variance was provided by the
sample variance. A standard one-mean ¢-test was
performed to assess the departure of the empirical
bias from 0.0; the asymptotic normality of the
sample mean was verified empirically. All these
outputs are available in the computer program
PLASTIC, which is available from the first author
upon request and on WWWwW at
ftp://gnome.agrenv.mcgill.ca/pub/genetics/software.

The Chlamydomonas example

We used part of Bell’s (1991) data set to compare
the three estimation methods; the same data were
used by Dutilleul & Potvin (1995) for illustration. It
originates from a series of experiments on the
ecology and fitness of Chlamydomonas reinhardtii
(Bell, 1990, 1991, 1992). The data reanalysed here
are log relative growth rates of strain CC-410 (mt™)
grown in eight environments (i.e. p =38). Twelve
genotypes (i.e. n = 12) were grown in each environ-
ment and the design was replicated twice (i.e. r = 2).
Experimental and technical details can be found in
Bell (1991). We estimated the genetic correlations
between the 28 pairs of environments by each
method. Genetic correlation estimates were
compared in regression biplots for two random vari-
ables, in which a 95% confidence interval was
computed for the slope of the major axis following
Sokal & Rohlf (1995, pp. 544-549).

Results and discussion
The simulation study

The primary objective here was to establish the best
estimation method using simulated data in which the
magnitude and sign of the theoretical genetic corre-
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lation r,, are fixed for a given among-environment
heteroscedasticity; this will serve as a basis for
comparison when the three methods are applied to
the Chlamydomonas example. Results are presented
in order of decreasing value of the theoretical
genetic correlation (Tables 1-5).

Under among-environment heteroscedasticity, the
following trends are observed. First, the higher the

heteroscedasticity and genetic correlation, the
poorer the performance of the standard method
(Tables 1-2 and 4-5). In fact, when |r,,| >0.0,
method 1 is only valid for low heteroscedasticity,
whatever the number of replicates, and, as expected
(Yamada, 1962; Fry, 1992), the bias is negative for
positive r,, and positive for negative r,,. Secondly,
for a theoretical genetic correlation of 0.0 (Table 3),

Table 1 Empirical bias, f} —7,,, and variance, s,zg, of the genetic correlations estimated by the standard method based on
the two-way analysis of variance with replicates of the raw data (method 1), by the method based on two separate one-way
analyses of variance with replicates (method 2) and by the new method based on the two-way analysis of variance with
replicates of the transformed data (method 3), using heteroscedastic data sets simulated with a theoretical genetic

correlation, 7., of 1.0

Method 1 Method 2 Method 3

Pairs of No. of

environments replicates Bias Variance P Bias Variance P Bias Variance P

1-8 2 —0.62 0.043 0.0001 0.0090 0.24 0.88 —0.0004 0.37 0.99
4 —0.60 0.014 0.0001 0.11 0.11 0.0021 0.062 0.091 0.042
8 —0.62 0.0063  0.0001 0.046 0.035 0.017 0.035 0.041 0.087

4-8 2 —0.31 0.17 0.0001 0.032 0.24 0.59 0.023 0.51 0.76
4 —0.31 0.043 0.0001 0.093 0.11 0.0082 0.070 0.10 0.033
8 —0.34 0.019 0.0001 0.042 0.038 0.037 0.021 0.028 0.22

7-8 2 —0.098 0.49 0.22 —0.051 0.33 0.53 —0.14 0.57 0.13
4 —0.0028  0.19 0.95 0.10 0.28 0.077 0.089 0.29 0.11
8 —0.014 0.072 0.60 0.059 0.066 0.026 0.055 0.10 0.087

Results are presented for pairs of environments 1-8, 4-8 and 7-8, which correspond to (a%; +ok. Dl (a%; + 0%, j+) ratios of
25.33, 6.90 and 1.33, respectively. P is the probability from the #-test of the significance of the bias. The number of
simulation runs was 100. See text for further details about the simulation model and the estimation methods.

Table 2 Empirical bias and variance of the genetic correlations estimated by the three methods, using heteroscedastic data
sets simulated with a theoretical genetic correlation of 0.5

Method 1 Method 2 Method 3

Pairs of No. of

environments  replicates Bias Variance P Bias Variance P Bias Variance P

1-8 2 —0.35 0.078 0.0001 0.029 0.40 0.71 0.0054 0.40 0.93
4 —0.31 0.027 0.0001 0.058 0.18 0.20 0.020 0.19 0.66
8 —0.29 0.019 0.0001 0.076 0.13 0.040 0.038 0.12 0.28

4-8 2 —0.095 0.19 0.036 0.068 0.28 0.30 0.0046 0.35 0.94
4 —0.22 0.081 0.0001 0.017 0.17 0.70 —0.041 0.18 0.34
8 —0.17 0.072 0.0001 0.018 0.15 0.66 —0.0089 0.16 0.82

7-8 2 —0.052 0.73 0.57 0.086 0.53 0.40 —0.024 0.66 0.80
4 0.017 0.31 0.76 0.074 0.40 0.28 0.044 0.38 0.49
8 —0.069 0.14 0.069 —0.0001 0.21 0.99 —0.011 0.18 0.80

The number of simulation runs and other notations are as in Table 1.

© The Genetical Society of Great Britain, Heredity, 80, 403-413.



HETEROSCEDASTICITY AND GENETIC CORRELATION 409

Table 3 Empirical bias and variance of the genetic correlations estimated by the three methods, using heteroscedastic data
sets simulated with a theoretical genetic correlation of 0.0

Method 1 Method 2 Method 3

Pairs of No. of

environments  replicates Bias Variance P Bias Variance p Bias Variance P

1-8 2 —0.034 0.081 023  —0.099 0.35 015  —0.027 0.40 0.68
4 —0.0050 0.029 0.77  —0.013 0.26 0.81 —0.021 0.24 0.67
8 0.023 0.025 0.15 0.045 0.18 0.29 0.047 0.16 0.24

4-8 2 0.042 0.25 041 —0.034 0.36 0.64 —0.016 0.55 0.83
4 —0.020 0.11 0.54  —0.093 0.30 0.10  —0.078 0.26 0.13
8 —0.0044 0.073 087 —0.034 0.20 0.46  —0.013 0.20 0.77

7-8 2 —0.0062 0.58 094 —0.062 0.55 054  —0.047 0.67 0.60
4 —0.0009 0.35 099 —0.049 0.47 051  —0.058 0.39 0.38
8 —0.070 0.21 0.13  —0.065 0.30 024  —0.068 0.29 0.21

The number of simulation runs and other notations are as in Table 1.

Table 4 Empirical bias and variance of the genetic correlations estimated by the three methods, using heteroscedastic data
sets simulated with a theoretical genetic correlation of —0.5

Method 1 Method 2 Method 3

Pairs of No. of

environments replicates  Bias  Variance P Bias Variance P Bias Variance P

1-3 2 0.31 0.050 0.0001 0.029 0.27 0.44 0.036 0.33 0.34
4 0.30 0.024 0.0001  —0.061 0.18 0.032 —0.037 0.20 0.19
8 0.32 0.021 0.0001 0.029 0.15 0.24 0.024 0.14 0.31

2-3 2 0.25 0.045 0.0001  —0.019 0.20 0.52 —0.032 0.20 0.26
4 0.26 0.036 0.0001 0.0002 0.13 0.99 0.0043 0.13 0.85
8 0.24 0.034 0.0001 0.020 0.098 0.30 0.023 0.097 0.25

1-2 2 0.017 0.42 0.69 —0.10 0.43 0.044 —0.017 0.50 0.73
4 0.046 0.28 0.18 —0.020 0.34 0.62 —0.0069 0.34 0.86
8 0.029 0.13 0.21 —0.060 0.19 0.034  —0.045 0.20 0.12

Results are presented for the pairs of environments 1-3, 2-3 and 1-2, which correspond to (¢&+ &, )/(c &+ 0¢. ) ratios
of 25.33, 12.48 and 2.03. The number of simulation runs was 250. Other notations are as in Table 1.

Table 5 Empirical bias and variance of the genetic correlations estimated by the three methods, using heteroscedastic data

sets simulated with a theoretical genetic correlation of —1.0

Method 1 Method 2 Method 3
Pair of No. of
environments  replicates Bias  Variance P Bias Variance P Bias Variance p
1-2 2 0.61 0.034 0.0001  —0.031 0.22 0.25 0.041 0.22 0.097
4 0.61 0.013 0.0001  —0.11 0.11 0.0001  —0.038 0.11 0.024
8 0.61 0.0061 0.0001  —0.051 0.036 0.0001  —0.013 0.015 0.041

Results are presented for environments 1 and 2, which correspond to a (azg—i— e j)/(cfé + o‘ée’ ;) ratio of 25.33. The number
of simulation runs was 400. Other notations are as in Table 1.
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all three methods perform very well, with no statis-
tically significant bias. Thirdly, as expected on a
theoretical basis (see The three estimation methods
section), method 3 performs well to very well, even
when r =2 and the level of heteroscedasticity is low
(see the pair of environments 7-8 in Tables 1 and 2,
and the pair 1-2 in Table 4). On the other hand,
method 2 gets worse with increasing r, especially for
high (negative or positive) r,p-values under high
heteroscedasticity (Tables 1 and 5). In particular,
method 2 provides less reliable genetic correlation
estimates than the other two methods, especially for
two replicates, in which case about 35% of the
correlation estimates were either out of range or
indeterminate because of a negative variance
component estimate under the square root in eqn
(3). Maximum likelihood estimation of the variance
components would not improve the performance of
method 2 because negative estimates would be
rounded to zero. Fourthly, the bias of method 1 is
almost constant when |r,y| >0.0 under moderate
and high heteroscedasticity, whereas there is no
evidence of a relationship between bias and number
of replicates for methods 2 and 3. The adjustment
for inflated genetic variance estimates in method 3 is
thus confirmed to be effective; this is reported here
for a o%/a% ratio of 3.0 and was observed for o%/c%
ratios of 4.0 or less (results not reported). Finally,
for all methods, the variance tends to decrease when
the number of replicates increases.

Under among-environment  homoscedasticity
(unpubl. results), the three estimation methods
behave very similarly in terms of absolute value of
the bias and its statistical significance, especially
when r,,=0.0, with a slight advantage overall for
the standard method. In particular, method 1
performs better for high and negative genetic corre-
lation. The most significant biases are for r,, = 1.0.
The lack of reliability mentioned above for method
2 holds true under homoscedasticity.

Overall, the novel method 3 performs better than
the other two methods. Figure 2 illustrates the bias
for three non-negative values of r,, when r=4.
When r,, = 0.0, among-environment heteroscedastic-
ity has no effect on the bias whatever the method.
Method 1 is strongly affected by heteroscedasticity
when 7,0=10.5 (slope = —0.014, P<0.001) and 1.0
(slope = —0.030, P<0.001). In contrast, the depar-
ture from zero is nonsignificant (P>0.05) for the
slopes of methods 2 and 3 when r,,=0.5 and 1.0,
with a mere tendency to increase for method 2; the
intercepts, however, are significantly (P<0.001)
different from zero when 7, = 1.0 (intercept = 0.052
and 0.048 for methods 2 and 3, respectively).
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Fig. 2 Bias of the genetic correlation estimates, ,, as a
function of the (¢¢+0¢&.,)/(0&+0¢.) ratio of variances
between environments j and j. The data were simulated
with four replicates per genotype and environment. The
bias, [} —7,,, was calculated for a theoretical genetic corre-
lation r,, of 1.0 (top), 0.5 (middle) and 0.0 (bottom),
using method 1 (circles; dotted regression line), method 2
(squares; dashed line) and method 3 (triangles; solid line).
See text for further details about the simulation
procedure.
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Method 2, more than method 3, thus tends to over-
estimate positive genetic correlations.

In conclusion, under among-environment hetero-
scedasticity, methods 2 and 3 perform better than
the standard method 1, except when the theoretical
genetic correlation is near zero. Method 3 is recom-
mended in all other cases, with the exception of
moderate genetic correlation and low to moderate
heteroscedasticity (e.g. ratios of about 2 to 12
between the genetic variances), for which method 2
is almost equivalent to method 3 but suffers from
lack of reliable genetic correlation estimates.
Increasing the number of replicates per genotype
and environment affects the performance of method
2, especially when the genetic correlation is strong,
whether positive or negative. Increasing the number
of replicates does not affect the performance of
method 3, as its adjustment for inflated genetic vari-
ance estimates in the data transformation is effective
in the range of ¢}/o¢ ratios considered (i.e. 1.0-4.0).
This simulation study represents the first demonstra-
tion that a method of genetic correlation estimation
based on data transformation is efficient in removing
the nuisance effects of among-environment hetero-
scedasticity in an ANova-based approach.

The Chlamydomonas example

Bell’s (1991) data are distinctly heteroscedastic, the
highest ratio of genetic variances between environ-
ments being equal to 32.6 (Dutilleul & Potvin,
1995). Based on the results of the simulation study,
therefore, we expected method 1 to underestimate
the absolute value of the genetic correlation consist-
ently. Indeed, the slope of the major axis between
the genetic correlations estimated with methods 1
and 2 is significantly lower than 1.0 (Fig. 3: n =19,
slope = 0.85, 95% confidence interval = [0.76, 0.95]),
as is that of the regression contrasting methods 1
and 3 (Fig. 3: n =24, slope = 0.84, 95% confidence
interval = [0.72, 0.98]). The slope of the major axis
between the genetic correlations estimated with
methods 2 and 3 is very close to 1.0 (Fig. 3: n =19,
slope =1.019, 95% confidence interval =[1.001,
1.037]), which indicates that methods 2 and 3 are
almost equivalently unbiased. Nevertheless, method
2 was less reliable than method 3 because the
former provided no estimates of the genetic correla-
tion for seven pairs of environments and yielded two
estimates outside the [—1, 1] range, whereas
method 3 always produced an estimate, even though
four of them were out of the range. Method 1
yielded a genetic correlation estimate for all 28 pairs
of environments (as did method 3), and only one of
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Fig. 3 Relationships between the genetic correlations esti-
mated by the three methods for the Chlamydomonas rein-
hardtii growth rate data (Bell, 1991). The comparisons are
between methods 1 and 2 (top), 1 and 3 (middle) and 2
and 3 (bottom). The dashed line corresponds to perfect
agreement between methods; the solid line represents the
regression major axis. Pairs of environments with genetic
correlation estimates falling outside the [—1, 1] range
were not considered in fitting the major axes.
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them was out of range. From the analysis of the
Chlamydomonas data, one may conclude that
method 1 consistently underestimated the absolute
value of the genetic correlation compared with
methods 2 and 3, and that method 3 should be
preferred to method 2 because of its higher
reliability.

Lack of effectiveness of other methods

We complete our discussion by elaborating on other
methods that were not retained for the simulation
study, either on a theoretical basis or after poor
preliminary results. The three methods below are all
based on eqn (3) and are performed on the
log-transformed data, transformed data with a zero
mean and a unit variance and the raw data in the
framework of the mixed anova models, respectively.

The log transformation is a well-known and very
simple variance-stabilizing transformation (e.g. Sokal
& Rohlf, 1995). In model (1), it would be applied to
all observations Yj; indiscriminately, but in eqn (4)
the data from two environments with unequal
genetic variances are transformed differently: the
dispersion of the observations from the environment
with the higher variance is decreased, whereas that
of the observations from the environment with the
lower variance is increased (Fig. 1). More import-
antly, the log transformation modifies the within-
environment means and thus the environment main
effects in model (1) (i.e. the ‘mean plasticity’; Bell &
Lechowicz, 1994), without completely removing the
among-environment heteroscedasticity. On that
basis, it cannot be recommended.

Transforming all the data from each environment
to a zero mean and a unit variance (including the
replicates) removes the environment main effects
from model (1) (i.e. there remains no term for mean
plasticity) and imposes a particular among-environ-
ment homoscedasticity with a common variance of
1.0 that can sometimes be quite out of range (i.e.
much higher or much lower than the variances
computed on the raw data). The variance compo-
nents estimated from such transformed data are of
no use per se; two experiments cannot be compared
on the basis of their within-environment variances if
these are all fixed at 1.0. Furthermore, the common
within-environment variance is not a common
genetic variance, because it is computed over geno-
types and replicates within a genotype instead of
among the genotypic means, and it incorporates the
entire error variance because the variance of obser-
vation Yy is a%;—l—aée,,- +¢: in model (1). This point
is particularly important from the perspective of

genetic correlation estimation from which the
contamination by the error variance should be
absent or at least minimized. Nevertheless, the esti-
mates of variance components ¢ and ¢, change in
such a way after (0, 1) transformation that the
resulting genetic correlation estimates are similar to
those provided by method 3 when r = 1, because the
genotype—environment interaction is then indistin-
guishable from the error term in eqn (1). Otherwise,
the (0, 1) transformation only approximates method
3 in both estimation and testing. In summary, in the
broad framework of plasticity analysis, the (0, 1)
transformation is not recommended; only when an
approximation of the genetic correlation is sufficient
(without testing) can this transformation be used.

To recall, the environment main effects, or simi-
larly the within-environment means, are maintained
by the new transformation (eqn 4) (Fig. 1; see also
Dutilleul & Potvin, 1995). Equation (4) also uses an
intermediate common genetic variance given by the
geometric mean of the genetic variances of environ-
ments j and j’ (Fig. 1), and method 3 provides the
user with an adjustment for the contamination of
the genetic variance estimates by the error variance
divided by the number of replicates.

Lastly, proc MIXED (SAS Institute Inc., 1995) may
seem to be an obvious solution to the problem of
among-environment heteroscedasticity in the analy-
sis of genetic correlations. In fact, this procedure
carries out repeated-measures ANOvA [the random
vectors y; in model (2) are profile vectors of
repeated measures on the same genotype within a
growth chamber], while estimating one variance
component associated with each random term
[genotype main effects and genotype—environment
interaction in model (1)] and a variance—covariance
matrix for the errors. Unfortunately, when using the
REPEATED Statement of prRoc MIXED, the variance
estimated for each environment separately is then
an error variance instead of a genotype—environ-
ment interaction variance component and the covar-
iance estimated between environments is computed
between the corresponding errors. The correlation
derived from this covariance will thus generally be
far from the theoretical genetic correlation.
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