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Comparing sire and dam estimates of heritability:
jackknife and likelihood approaches

DA Roff

Department of Biology, University of California, Riverside, CA, USA

Three estimates of heritability are available from the half-sib
pedigree design: the sire, dam and genotypic estimates.
Because of its significantly smaller standard error, the
genotypic estimate is preferred provided that there are no
non-additive effects that inflate the estimate. | present two
methods to test for such effects: these are a ttest of the
paired sire and dam pseudovalues from the jackknife
procedure and the likelihood ratio test from the animal
model. Both methods are shown to be valid tests for
significant dominance and/or maternal effects. SPLUS

coding for the implementation of the jackknife method is
provided. Unless sample sizes are very large, the power of
the tests is low and hence caution is advised in the use of the
genotypic estimate following a nonsignificant test. An
approximate power analysis can be done using the data
from the jackknife method but the estimated power is
typically a substantial underestimate of the true power and
its use is not recommended.
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Introduction

One of the most common methods of estimating herit-
abilities or genetic correlations is the half-sib (also called
the North Carolina 1) design in which each male is mated
to several females (Roff, 1997; Lynch and Walsh, 1998).
Variance components are estimated by a nested analysis of
variance, giving three possible estimates of heritability,
called the sire, dam and genotypic estimates (Becker, 1992).
Epistatic effects are assumed to be negligible and maternal
effects may be due to either nuclear or cytoplasmic sources
(Roach and Wulff, 1987; Mousseau and Fox, 1998). The sire
estimate is typically the preferred estimate as it is free from
possible maternal and/or dominance variance (Kearsey
and Pooni, 1996). The dam and genotypic estimates are
potentially inflated by either of these sources of variance.
Because its standard error is approximately half that of the
sire or dam estimates, in the absence of these effects, the
best estimates of additive genetic variance and heritability
are the genotypic estimates (the mean of the sire and dam
estimates).

Most papers estimating parameters by the half-sib
design either present only the sire estimate or both the
sire and dam estimate and then draw conclusions
concerning the presence of maternal and/or dominance
variance by a qualitative examination of the absolute
difference between the two estimates (for example, p.
171, Falconer, 1989). Despite the fact that the genotypic
estimate has a significantly smaller standard error, it is
rarely used. A primary reason for this reluctance is the
problem of deciding if the dam estimate is confounded
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by maternal and/or dominance components, or if the
sire and dam estimates are significantly different. In the
present paper, I present two methods for statistically
testing for a difference between the sire and dam
estimate and use simulation to determine both the type
1 error rate for the tests and their power. The methods I
consider are the jackknife using the variance components
from a nested analysis of variance and the likelihood
ratio test utilizing the animal model.

Methods

The jackknife method for testing between sire and dam
estimates

The logic and methodology of the jackknife are explained
in detail in Roff (2006) and I present here only the
method of application. Because the method is the same
for either variances, covariances, heritabilities or correla-
tions, I describe the application in regard to the
heritability. The procedure is as follows:

(1) Estimate the sire and dam heritabilities, say ﬁ% and
hp, respectively, by nested analysis of variance or
restricted maximum likelihood,

(2) Delete a sire group from the data set and recalculate
the two components, say h%_; and h}_q, respectively

(3) Construct the sire and dam pseudovalues
(Ss1, Spi1, respectively), Ss;=nhi—(n—1h%_; and
Sp1 =nh3—(m—1)h}_1 where n is the number of sire
families.

(4) Re-enter the deleted sire family, delete the next
family and calculate the next pair of pseudovalues.
Repeat this process, deleting each sire family once to
produce n pseudovalues.

(5) The distribution of pseudovalues should be the same
as that of the heritabilities and hence the sire and
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dam estimates can be compared using a paired t-test
of the pseudovalues (see Appendix A for SPLUS
coding).

Because of its smaller standard error, if no significant
difference is found between the two estimates, one might
use the genotypic estimate. However, before doing so, it
is important to consider the power of the test to detect a
biologically meaningful difference. Power analysis of a
t-test is straightforward and an approximate power
analysis can be carried out using the estimated standard
error from the paired t-test (provided there are sufficient
sire families to give a reasonable estimate of the standard
error). However, the estimation of power will be an
underestimate since a nonsignificant test, given that
there really is a difference, will occur only when the
standard error is unusually large relative to the mean.
Thus, it is important to determine if the estimation of
power is seriously biased downwards.

The likelihood ratio approach using the animal model

In contrast to the approach employed in the foregoing
section of determining variance components from varia-
tion among families (sires and dams), the animal model
uses the individual as the unit of estimation. A detailed
description of the animal model and its application is
given by Kruuk (2004). In the present context, maternal
and/or dominance variance is estimated by including
Dam as a random term in the model. The significance
of this term is then estimated from the log-likelihood for
the model without the Dam term (say LLnopam) With
the likelihood of the model including the Dam term
(Say LLpam): 2(LLpam—LLnopam) is distributed as a
with 1 d.f.

Statistical tests and programs used

Because non-additive effects increase the variance
estimated by the Dam component, the test for a dam
effect is one-tailed. The jackknife method was imple-
mented using Fortran, which permitted a relatively large
number of iterations (for example, 11000 for the type 1
error simulations) for each set of parameter combina-
tions. Variance components for the animal model were
estimated using the SPLUS add-on of ASReml (Butler
et al., 2007). Due to logistical constraints, the number of
iterations per parameter set was set at 1000 for the
animal model. Analysis using the animal model was
restricted to variance components, whereas the jackknife
approach permitted the analysis of both variances and
heritabilities.

Description of simulation model
Individual trait values were simulated by the equation

Yi+ Z;
Xijk = ( 1 7 l]) + Wik + ejji + Mij (1)

where X is the trait value for the kth individual from
dam family j and sire family 7; Y; is a random normal
variate unique to sire family 7, N(0, V), with mean 0 and
additive genetic variance, V,; Z; is a random normal
variate, N(0, V), unique to dam family j; Wi is a
random normal variate, N(0, V,/2), unique to each
individual; e;j is the environmental variance distributed
as N(0, 1); and M;; is the maternal and/or dominance
component (for simplicity, I shall refer to this compo-
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nents as the ‘maternal’ effect or component), distributed
as N(0, V). The additive genetic variance, V,, was
determined by setting the environmental variance, Vg,
equal to 1 and using the relationship Va=h*/(1-h?),
where h? is the heritability in the absence of maternal
effects. Maternal genetic variance was set as a fraction of
the additive genetic variance, Vyy=MVa.
The sire, h%, and dam, h? heritabilities are

W= VA/(l + Va +VM)
h2 = (Va +4V)/(1+ Va4 Vi)

Using the relationships between h? and V, and between
VM and V,, it can be shown that the ratio of the dam to
sire heritability estimates is 1+ 4M.

Simulations were run with 3 dams per sire, 5 offspring
per dam and 20, 50 or 100 sires. Heritabilities were set at
0.1, 0.5 or 0.8 in the absence of maternal effects. As noted
above, maternal genetic variance was set as a fraction of
the additive genetic variance: 0, 0.125, 0.25 and 0.5, which
corresponds to a dam heritability estimate, 4% in relation
to the sire estimate, h% of hp=h3, 1.5h%, 2h% or 3h%,
respectively. The inclusion of maternal effects reduced
the sire heritabilities at the three values of maternal
effects to 0.099, 0471 and 0.727. In the case of no
maternal effects, the simulations determine if the type 1
error rate is the required 5%, while the other cases are
used to examine the power of the test to detect a
maternal effect and the efficacy of estimating power
given a nonsignificant test.

(2)

Resulis

Even with the considerable sample size of 750 indivi-
duals (50 sires, 3 dams/sire, 5 offspring/dam) and no
maternal effect, there is substantial discrepancy between
the sire and dam estimates of heritability (Figure 1). At
low heritability (0.1) the sire estimate of the standard
error is smaller than the dam, but the situation reverses
as heritability increases, the two being approximately
the same at 0.5 and reversed at 0.8 (Figure 1). The
genotypic estimates of heritability are consistently close
to the correct value and the standard errors are
substantially reduced illustrating the merit of using the
genotypic estimate when non-additive effects can be
discounted.

No maternal effects (type 1 error rate)

Both the jackknife method and the likelihood ratio test
produced type I error rates close to the standard 5%. At
heritabilities less than 0.8, the jackknife method signifi-
cantly underestimates the type 1 error rate for both
heritabilities and additive genetic variances (Table 1).
While the absolute difference is small relative to the
required 0.05 (0.03-0.04 rather than 0.05), it is statistically
significant. For the largest heritability (0.8) the jackknife
method produces a type 1 error rate for the test between
sire and dam heritabilities that is not significantly
different from the required 5%, whereas the jackknife
method for the additive genetic variances slightly, but
significantly, overestimates the type 1 error rate (Table 1).
The likelihood ratio test gives similar results to the
jackknife method (Table 1), although the smaller number
of replications (1000) resulted in a slightly more erratic

33

Heredity



e

Comparing heritability estimates

DA Roff
34
. .
03 2 o3 2
E ﬁj LE 0.3
5 | 3 E
st °
g 02 v i 20 £ o2 2 o2
S . Iy < ° »n 175)
P rd ﬁmo O
» (PN o0 ‘a ) % o o
E o1 0¥ e 2 041 5 > 01
(o] ° »
(] c c
Q [0
(O] (6]
0.0 , : 0.0 ; 00 : : .
00 0.1 0.2 03 0.0 0.1 02 0.3 0.0 0.1 02 03
Sire Standard Error Sire Standard Error Dam Standard Error
1.2 0 1.2 D 1.2
@ o co
1.0 So 1.0 %0 1.0 s o
2 & S0 6908 ° g o ‘730(9 o° g Sy 0%38%0 oD
£ 08 %08 £ %B%oo 2 o8 &2 §° 8 o8 oo cf’gb
S  ne 8 00, S ° 8.3° g o ol &s ©
£ os i o &7 C0l B 08 5% o 06 sded Ta
o . A AAAA Aopa o a IS ﬁ AAA?‘ GAR o
£ 04 ‘:‘. a &AAA a o g 04 %‘39‘\@? o g 04 a0 8 K000
S 1 a ° & ° *
8 o021 * as - % 021, o ° 2 02 Al
) ‘g
00 . O 0] ¢ O o0
. L [] oO ] ®
-0.2 -0.2 0.2

02 00 02 04 06 08 10 12
Sire heritability

02 00 02 04 06 08 10 12
Sire heritability

02 00 02 04 06 08 10 12
Dam heritability

Figure 1 Comparison of the three types of heritatability estimates and their standard errors for sample sizes of 50 sires, 3 dams/sire and 5
offspring per dam (50 replicates per combination). Heritabilities set at 0.1 (closed circle), 0.5 (open triangle) and 0.8 (open circle).

Table 1 Effect of varying the number of sires (N) and heritability
() on the type 1 error rates for a half-sib pedigree design

N h2 ANOVA? Animal model
V4 (ANOVA h?, ANOVA V)
h? Vi
20 0.1 0.0321 0.0300 0.0222 (0.038, 0.038)
50 01  0.0375  0.0365 0.0374 (0.036, 0.035)
100 01  0.0385  0.0380 0.0572 (0.051, 0.051)
20 05  0.0448  0.0419 0.05421 (0.047, 0.047)
50 05  0.0444  0.0448 0.0506 (0.042, 0.045)
100 0.5 0.0473 0.0484 0.0667 (0.050, 0.051)
20 08 00515  0.0524 0.0566 (0.051, 0.048)
50 0.8 00496  0.0537 0.0210 (0.035, 0.040)
100 0.8 00511  0.0553 0.0587 (0.056, 0.060)

Abbreviation: ANOVA, analysis of variance.

Difference between the sire and dam estimates tested using the
jackknife method (ANOVA) or the animal model.

“Estimates based on 11000 replicates. Critical upper and lower
values of P (not corrected for multiple tests) are 0.0470 and 0.0530.
Entries in bold font are significantly different from 0.05.
PEstimates based on 1000 replicates. Values for the jackknife
methods based on only the 1000 replicates used for the Animal
model are shown in parentheses. Critical upper and lower values of
P (not corrected for multiple tests) are 0.0402 and 0.0598.

set of estimates, as is also evident in the jackknife
estimates based on the same 1000 replications.

Maternal effects present (power analysis)

Analysis using the jackknife shows that, not surprisingly,
power increases with the size of the maternal variance
relative to the additive genetic variance, sample size and
heritability (Figure 2: each estimate was made from
10000 replications). High heritabilities and large sample
sizes are required to raise the power above 60%: only in
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the case of the largest maternal variance (V=0.5V,),
the largest number of sires (100) and medium to large
heritabilities (0.471, 0.727) does the power exceed 80%
(Figure 1). To examine the likelihood test, I ran 1000
replications at Vy=0.125V,, h?=0.5 (=0.471 with
maternal effects) and number of sires at all three sizes
(N=20, 50, 100). The results agree well with those
from the jackknife (N=20, Pjck=0.11, Pprixe=0.09;
N:50, P]ack:O.lg, PLike:O-17/' N= 100, P]aCkZO.Zg,
Prie=0.22).

In each case in which a nonsignificant result was
obtained, I estimated the power to detect the true
difference using the standard error estimated from the
pseudovalues: except when the heritability or sample
size is low, the estimated power is far below the true
value (Figure 3). These results suggest that a post hoc
power analysis is unlikely to be informative.

The low power of the tests (Figure 2) indicates that if a
dam effect is not detected caution should be exercised in
assuming no effect and using the genotypic estimate. To
examine the consequences of this action, we need to
consider the error incurred (Figure 4). The absolute
percentage error between the real heritability value and
the estimated value is very similar for the sire and
genotypic estimates when maternal effects are relatively
low (0.125V,, triangles in Figure 3), is generally higher
for the genotypic estimate for the intermediate maternal
effect (0.25V,, circles in Figure 3) and is consistently
higher for the highest maternal effect (0.5V,, squares in
Figure 3).

Given that there is a maternal effect but that the
statistical tests (jackknife or likelihood) are not signifi-
cant, what is the probability that the true value is not
included in the confidence regions of the sire or
genotypic estimates? Confidence regions were estimated
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as t+2 s.e. The confidence interval estimated using the
sire component excludes the true value relatively few
times (2-3%) except when the maternal effect is very
large (M =0.5), the number of sires is large (100) and the
heritability is moderate to large (0.471, 0.727; Figure 5).
On the other hand, the confidence limits estimated using
the genotypic component has a high probability of
excluding the true value (Figure 5).

Discussion

Both the jackknife and likelihood approaches are appro-
priate for testing the difference between sire and dam
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estimates in a half-sib pedigree design. At the lowest
heritability (0.1) used the type 1 error rate is somewhat
underestimated (0.03-0.04), meaning false positives
occur in less than the usual 5% of cases, but not enough
to invalidate the test. The type 1 error rate for the test for
the difference in variance components appears to be
slightly overestimated at the highest heritability used
(0.055 instead of the required 0.05).

Given that the genotypic estimate of heritability has a
less erratic behaviour and is more precise with a
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markedly lower standard error than either the sire or
dam estimate (Figure 1), the above results suggest that
this estimate should be used following a test for a
difference between the sire and dam estimates. However,
because of the relatively low power of the test (Figure 2),
conclusions assuming the lack of non-additive effects
should be made with caution. The low power, unless
sample sizes are very large, is consistent with power
analyses of tests for differences in genetic parameters
between populations (Shaw, 1991).



The jackknife method has two potential advantages
over the animal model: first, because it is a simple paired
t-test it is possible to do at least some rough calculations
on the power of the test should no significant difference
be found between sire and dam estimates. Unfortunately,
estimates of power in the case of nonsignificant results
considerably underestimate the true power when sample
sizes and/or heritability are large (Figure 3). The second
potential advantage of the jackknife method is that it is
readily programmed in SPLUS (see Appendix A), R or
SAS, whereas the animal model is extremely difficult and
will typically require a dedicated package such as
ASREML, which is not inexpensive (of course the animal
model can be used for a wide range of pedigree
structures and hence is more flexible than the nested
analysis of variance approach).

I suggest that all three heritability estimates should be
reported and either the jackknife or likelihood method be
used to test for a difference between the sire and dam
estimate. If the difference is significant, one has evidence
of non-additive effects and the sire estimate is preferred.
If the sire estimate exceeds the dam estimate, then one
can use the genotypic estimate because non-additive
effects will increase the dam estimate not the sire
estimate. If the sire estimate is not significantly less than
the dam estimate, the course of action is less clear due to
the low power of these tests. The choice will often
depend upon whether the researcher considers it likely
that non-additive effects are present. For example, based
on previous studies, it would be extremely unwise to
assume the absence of maternal effects in propagule size
or early growth rate, but reasonable to assume little effect
on adult morphological structures (see reviews in
Mousseau and Fox, 1998).

Appendix A

SPLUS coding for the analysis of a half-sib data set, with
a test of the difference between sire and dam estimates

The program assumes that

1) the data are in a file called Data
main program)

2) the Sire coding is SIRE

3) the Dam coding is DAM

4) The trait is coded as Trait

# DAM is coded as 1,2,3: 1,2,3 etc

EEEE
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(this can be anything if changed in

HHAHHHHH AR H A # A HFUNCtion to calculate heritability#######H##H#SH#HHHAH#SSHS

H2.Estimator <- function (DATA)

{

# Estimate Variance components
Varl

# Estimate Heritability

<- varcomp (formula=Trait~SIRE/DAM, data=DATA, method="reml")

h2.Sire <- 4*Varl$variances[1l]/sum(Varl$variances)
h2.Dam <- 4*Varl$variances[2]/sum(Varl$variances)
h2.8D <- 2*(VarlS$variances|

# Output Heritability
H2 <- c¢(Prop,h2.Sire,h2.Dam, h2.SD)
return (H2)

}

1
1
1]+Varl$variances[2]) /sum(VarlsSvariances)

HHHAHHHHHAHHAH A HHHH A A H A HHHHEDD Of Function#############HHHHAHAHHSHAHAHIS
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HAHHHHHHAHAHHAAHSAHHAH A H A HAHHHHHHHHMAIN PROGRAMS H#HH S HH A H A HHHHHHHHHHHHHSHHH

The main program will contain coding to construct the relevant data set if
not already available. I here assume that it has been constructed.
I assume that the file is called Data with at least columns labelled
SIRE, DAM, Trait (order not important)
Set up matrix for storage of pseudovalues
Make sure SIRE and DAM are random factors

SIRE <- factor (Data$Sire)

DAM <- factor (Data$Dham)

is.random(Data$SIRE)<- T

is.random(Data$SDAM) <- T
# Call function and save observed heritabilities

H2.0BS <- H2.Estimator (Data)

# Do nested anova to test for SIRE and DAM effects
Model .ANOVA <- aov(Trait~SIRE/DAM, data=Data)

HH o FF o H I

A <- summary (Model.ANOVA, ssType=3)
# Calculate proper F coefficient for SIRE
F.coef <- ASF[1]/ASF[2]
dfl <- ASDf[1]
af2 <- ASDE[2]
P <- 1 - pf(F.coef, dfl, df2) # p-value of stat

HeHSHAHAH SRS HAH AR AR AR AR A A Enter Jackknifef#######A4H4H4H4H4H4H4HEHES
# Get a list of the SIRE codes

menuTable (varnames = "SIRE", data = Data, print.p=F, save.name ="Sire.Sizes")
# Delete Sires for which counts are zero

Sire.Sizes <- Sire.Sizes[Sire.Sizes$Count>0, ]

Nos.of.Sires <- length(Sire.SizesSSIRE)

Pseudovalues <- matrix(0,Nos.of.Sires, 3)

# Now iterate through Sires
for (Ith.Sire in 1: Nos.of.Sires)

{
# Get code for SIRE and delete from data set, calling new data Data.minus.ONE
I <- Sire.Sizes[Ith.Sire,1]
menuSubset (data = Data, subset.expression = "SIRE!=I", save.name =

"Data.minus.ONE", show.p = F)
# Call function and calculate pseudovalues
H2.minus.ONE <- H2.Estimator (Data.minus.ONE)
Sire.Pseudo <- H2.0BS[2]*Nos.of.Sires - H2.minus.ONE[2]* (Nos.of.Sires-1)
]1*(Nos.of.Sires-1)
1*(

Nos.of.Sires-1)

Dam. Pseudo <- H2.0BS[3]*Nos.of.Sires - H2.minus.ONE[3
SD. Pseudo <- H2.0BS[4]*Nos.of.Sires - H2.minus.ONE[4
# Store data
Pseudovalues|[Ith.Sire,] <- c(Sire.Pseudo,Dam.Pseudo, SD.Pseudo)
} # Next pseudovalue

# Analyse heritability pseudovalues
# Test for difference between SIRE and DAM estimate

Sire.Dam.test <- t.test (x=Pseudovalues[,1], y=Pseudovalues|[,2], mu<O0,
paired=T,var.equal=T, conf.level=.95)
Y <- Pseudovalues|[,1] - Pseudovalues]|, 2]
SE.t <- sqgrt(var(Y)/Nos.of.Sires)

# Calculate Jackknife estimates
h2.Sire <- mean (Pseudovalues|[,1])
h2.Dam <- mean (Pseudovalues|[,2])
h2.SireDam <- mean (Pseudovalues|[,3])
n <- nrow (Pseudovalues)
SE.Sire <- sgrt (var (Pseudovalues|[,1]) /n)
SE.Dam <- sgrt(var (Pseudovalues|[,2]) /n)
SE.SireDam <- sqgrt (var (Pseudovalues|[,3])/n)

HeHAHAHAHAHAHAH AR R RS Output results HAHAHAHAHAHAHAHAHAH AR HSAS AR AR HSHSHS
# Nested ANOVA results and original estimate

print (4)

print (c(F.coef,dfl1,df2,P))

print (H2.0BS) # Sireh2, Damh2, SireDamh2
# Jackknife estimates and t test between SIRE and DAM

print (c(h2.Sire,SE.Sire,h2.Dam, SE.Dam) )

print (c (h2.SireDam, SE.SireDam) )

Sire.Dam.test

Heredity
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