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Efficiency of triple test cross for detecting epistasis
with marker information

C Zhu and R Zhang
Laboratory of Population and Quantitative Genetics, The State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of
Life Science, Fudan University, Shanghai, PR China

The triple test cross (TTC) is an experimental design for
detecting epistasis and estimating the components of genetic
variance for quantitative traits. In this paper, we extend the
analysis to include molecular information. The statistical
power of the mating design was assessed under a model
assuming that a finite number of loci affect the trait in
question. Formulae are developed for the analysis with or
without marker information relating to the recombination
fraction between loci, the genetical properties of quantitative
trait controlled by the quantitative trait loci (QTL), the linkage
phases of the parents and population size. Application of
these formulae showed that the recombination fraction
between genes and the magnitude and the types of epistasis

have important interactions in their effects on power. The
results demonstrate that the TTC may have increased power
to detect epistasis when marker information is present.
However, the simulation experiments show that the standard
deviation of the estimated expected mean square was higher
with one marker than that with two, whereas the correspond-
ing value without marker information was the lowest. In
addition, we demonstrate that the relative position of QTL
and markers and the number of markers can both affect the
power of epistatic detection.
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Introduction

In any attempt to make appropriate use of quantitative
genetic variation in animal and plant breeding programs,
one needs to appraise the genetic architecture of the
traits, using specific mating designs to statistically
evaluate the relevant parameters. Most such designs
offer statistical tests for the significance of, and estima-
tion of, the additive and dominant components of the
polygenic variation (Zeng, 1999; Mackay, 2001). More
complicated designs are needed to obtain efficient
statistical inference about the epistatic component of
the genetic variation (in addition to the additive and
dominant parts). The triple test cross (TTC), which was
originally proposed by Kearsey and Jinks (1968),
provides not only a direct test for significance of the
epistatic variance component but also unbiased estimates
of additive and dominant components whenever epis-
tasis among polygenes is absent. Pooni and Jinks (1976)
demonstrated the distinct superiority of the TTC over the
alternative strategies, in statistical power for detecting
complementary and duplicate epistasis based on a
random model of polygenic effects. Since its innovation,
various modifications or extensions have been made and
popularized its applications in both animal and plant

breeding (Jinks et al., 1969; Jinks and Perkins, 1970; Pooni
et al., 1980; Goldringer et al., 1997).
The recent advances in molecular biology have

allowed construction of fine-scale genetic marker maps
for dissecting quantitative genetic variation into chro-
mosomal loci (QTL) (Lander and Botstein, 1989; Haley
and Knott, 1992; Luo and Kearsey, 1992; Zeng, 1994;
Satagopan and Yandell, 1996; Kao et al., 1999; Sen and
Churchill, 2001). QTL analysis opens the opportunity to
characterize epistatic effects between QTL as well as
effects at individual QTL (Holland, 1998; Boer et al., 2002;
Kao and Zeng, 2002; Yi and Xu, 2003; Yi et al., 2005), and
reveals ubiquitous evidence for epistatic effects detected
in both animal and plant species (Fijneman et al., 1996;
McMullen et al., 1998; Hua et al., 2003; Moore, 2003).
However, many statistical problems and issues of
experimental design remain to be resolved for improving
statistical inference of epistasis (Flint and Mott, 2001;
Doerge, 2002; Jansen, 2003). For instance, Kao and
Zeng (2002) recently pointed out that a two-way
ANOVA exploiting genetic marker and trait phenotype
data from an F2 segregating population was, in principle,
inappropriate for testing for pairwise epistasis, even
though this approach has been widely used in analyses
of such data sets (Yu et al., 1997; Li et al., 2001; Hua et al.,
2003).
The present paper aims at developing a quantitative

genetics model and method for detecting epistasis by
making use of the TTC mating design with marker
information and exploring statistical power of the
experimental design with or without incorporating
marker information.
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Theory and analysis

A finite loci model of TTC without marker information
We start by re-describing the TTC mating design, for the
benefit of readers unfamiliar with it. A random sample of
m individuals from the F2 generation obtained by
crossing two inbred lines P1 and P2 are backcrossed to
three testers, that is, the parental lines P1, P2 and F1. This
generates 3m families, each of which is replicated by
raising either n plots or n individuals in a randomized
block experiment. Kearsey and Jinks (1968) demon-
strated that to test for epistasis was equivalent to testing
if �L1i þ �L2i � 2�L3i ¼ 0, with �L1i, �L2i and �L3i being progeny
means of the three families from crossing the testers to
the ith F2 individual (i¼ 1, 2, y, m).

In the present study, we consider two QTL, A and B,
each with two alleles (Aa and Bb). They are linked with a
recombination fraction r. The genotypes of the three
testers are denoted as AABB, aabb and AaBb, respec-
tively. There are nine possible genotypes, AABB, AABb,
AAbb, AaBB, AaBb, Aabb, aaBB, aaBb and aabb, in an F2
population. Their genetic effects can be written as

gi ¼mþ a1x1 þ a2x2 þ d1ð0:5� x21Þ
þ d2ð0:5� x22Þ þ iaax1x2 þ iadx1ð0:5� x22Þ
þ idax2ð0:5� x21Þ þ iddð0:5� x21Þð0:5� x22Þ

ð1Þ

where m is the population mean, a1 and a2 (d1 and d2) are
the additive (dominant) genetic effects at loci A and B; iaa,
iad (ida) and idd are additive� additive, additive�domi-
nant and dominance�dominance epistatic effects, respec-
tively. The indicator variables are defined as

x1 ¼
1 if genotype at A locus is AA

0 if genotype at A locus is Aa

�1 if genotype at A locus is aa

8><
>:

x2 ¼
1 if genotype at B locus is BB

0 if genotype at B locus is Bb

�1 if genotype at B locus is bb

8><
>:

Under a random genetic effect model, the expected variance
component between �L1i þ �L2i � 2�L3i can be worked out as

s2I ¼
r2

36
i2aa þ

1

2
i2ad þ ð1� 2rÞiadida þ

1

2
i2da

�

þð1� 2rþ 2r2Þ2i2dd þ 2ð1� rÞð1� 2rÞiaaidd
i ð2Þ

It can be seen that epistatic effects and linkage between the
two loci determine the above epistatic component. However,
the estimate of the variance component could be biased
downwards because of the multinomial variance of sample
means (Falconer and Mackay, 1996, pp 51–56) and a highly
unbalanced hierarchical structure of the data (Luo, 1993;
Knott, 1994). This problem may disappear if the QTL effects
are assumed to be fixed such as in Knott (1994) and Luo
(1998).

Let ft be the probability of the ith genotypes at QTL
in the F2 population (t¼ 1, 2, y, 10), and ftjk be the
frequency of the kth QTL genotype (k¼ 1, 2, y, 10)
within the jth full-sib family (j¼ 1, 2, 3) from the tth F2
parent (t¼ 1, 2, y, 10). If we let mt be the number of the
tth genotype in the F2 samples and ntjk be the number of
individuals with the kth QTL genotype within the jth

full-sib family from the tth F2 parent, they may be
considered to be random variables following multi-
nomial distributions with two sets of parameters: ft and
ðm ¼

P
t¼1 mtÞ and ftjk and n, respectively.

Let bt (t¼ 1, 2, y, 10) be the effect of family of
�L1i þ �L2i � 2�L3i, with �L1i, �L2i and �L3i being progeny means
of the three families from crossing the testers to the ith F2
individual (i¼ 1, 2,y, m) and gijk be the fixed effect of the
kth QTL genotype (k¼ 1, 2, y, 10) within the jth full-sib
family (j¼ 1, 2, 3) from the ith F2 parent (i¼ 1, 2, y, m).
The expected value of bt and gtjk can be written in terms
of the effect of the QTL. According to the method of
analysis of variance under an unbalanced two-way
nested design as described in Searle (1987, p 74), we
can work out the following statistics:

The expected mean square between �L1i þ �L2i � 2�L3i

EMSb ¼ 1

6ðm� 1Þ
X10
t¼1

mnftb
2
t

(

� n
X10
t¼1

ftð1þ ðm� 1ÞftÞb2t

"

þ2ðm� 1Þ
X

tojp10

ftfjbtbj

3
5

þ
X10
t¼1

mft
X3
j¼1

T2
j

X
k¼1

ftjkð1þ ðn� 1ÞftjkÞg2tjk

"

þ2ðn� 1Þ
X
kol

ftjkftjlgtjkgtjl

#

�
X3
j¼1

T2
j

X10
t¼1

X
k¼1

ftftjk

"
½1þ ðmn� 1Þftftjk�g2tjk

þ2ðmn� 1Þ
X

tosp10

X
kol

ftfsftjkfsjlgtjkgsjl

#)
þ s2e

ð3Þ
which has m�1 degrees of freedom and its significance
indicates the presence of dominance�dominance and
additive�dominance epistasis (Jinks and Perkins, 1970),
The expected sum of squares of �L1i þ �L2i � 2�L3i

ESSb ¼ 1

6

X10
t¼1

nftb
2
t

(

þ
X10
t¼1

ft
X3
j¼1

T2
j

X
k¼1

ftjkð1þ ðn� 1ÞftjkÞg2tjk

"

þ2ðn� 1Þ
X
kol

ftjkftjlgtjkgtjl

#)
þ s2e

ð4Þ

which has m degrees of freedom and its significance
infers the presence of all epistatic effects (Jinks and
Perkins, 1970), and the expected mean square within full-
sib families

EMSw ¼
X10
t¼1

ft
X3
j¼1

T2
j

6

X
k¼1

ftjkð1� ftjkÞg2tjk

"

�2
X
kol

ftjkftjlgtjkgtjl

#
þ s2e

ð5Þ
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which has 3m(n�1) degrees of freedom and is used to test
for significance of the above two expected statistics. In
equations (3)–(5), Tj (j¼ 1, 2, 3) is the coefficient of
orthogonal contrast and takes values T1¼T2¼ 1 and
T3¼�2 (Snedecor and Cochran, 1989, p 257). It must be
noted that covariances in the number of progeny with
any given QTL genotype between different marker
genotype classes are equal to zero and this holds
throughout the paper.

A model of TTC in the case of finite loci with marker

information
We incorporate marker information into the above TTC
analysis by considering two scenarios – one- or two-
marker loci. Firstly, we consider a marker locus linked to
the two QTL.

We consider a marker locus lying between two linked
QTL with genotypes MM, Mm, mm observed for each F2
parent. The genotypes of the parental lines P1, P2 and
their offspring F1 are denoted as AAMMBB, aammbb
and AaMmBb, respectively. Let r12 be the recombination
fraction between loci A and M, and r23 between M and B.
Without interference, the recombination fraction between
A and B is given by r13¼ r12(1�r23)þ r23(1�r12). The m
families of L1, L2 and L3 populations can be divided into
three categories according to marker genotype of F2
parent. The number of individuals with each of the
marker genotypes, ms (s¼ 1, 2, 3), follows a trinomial
distribution. Under the QTL effect model given by
equation (1), frequencies of F2 QTL genotypes given
marker genotypes are described in Table 1.

It can be readily shown that the effect of the sth marker
genotype as of �L1s þ �L2s � 2�L3s (s¼ 1, 2, 3) is

as ¼
X10
t¼1

fstbt ð6Þ

where bt describes the progeny means of the tth family
group (t¼ 1, y, 10) of �L1s þ �L2s � 2�L3s within the sth
marker genotype, fst describes the conditional probabil-
ities of the tth family group given sth marker genotype
shown in Table 1. We can work out

a1 ¼ r13 iaaþð1þ2r23Þiadþð1þ2r12Þidaþð1þ2r13Þidd½ �

a2 ¼ r13 iaaþð1þ 2r13Þ2idd
ih

a3 ¼ r13 iaaþð1þ2r23Þiadþð1þ2r12Þidaþð1þ 2r13Þidd½ �
ð7Þ

When there are two molecular loci linked to the two QTL,
we consider one of all possible orders of marker-QTL
loci, M1AM2B, to demonstrate the following analysis. Let
rij be the recombination fraction between the ith and jth
loci and assume there is no recombination interference.
Under the two-marker model, we can work out the effect
of the ith maker genotype as (s¼ 1, y, 9)

a1 ¼r24fiaa � ð1� 2r34Þiad � ð1� r12 � r23Þ
�½ida � ð1� 2r34Þidd�=ð1� r13Þg

a2 ¼r24fiaa � ½ð1� 2r12Þr23ð1� r23Þida
� ð1� 2r24Þ2r12ð1� r12Þidd�=½r13ð1� r13Þ�g

a3 ¼r24fiaa þ ð1� 2r34Þiad
þ ðr12 � r23Þ½ida þ ð1� 2r34Þidd�=r13g

a4 ¼r24fiaa � ð1� 2r34Þiad � r12ð1� r12Þ½ð1� 2r23Þida
� ð1� 2r24Þidd�=½r13ð1� r13Þ�g

a5 ¼r24fiaa þ ½ð1� 2r24Þ2

�ð1� 2r12 þ 2r212Þ=ð1� 2r13 þ 2r213Þ�iddg
a6 ¼r24fiaa þ ð1� 2r34Þiad þ r12ð1� r12Þ½ð1� 2r23Þida

þ ð1� 2r24Þidd�=½r13ð1� r13Þ�g
a7 ¼r24fiaa � ð1� 2r34Þiad

þ ðr23 � r12Þ½ida � ð1� 2r34Þidd�=r13g
a8 ¼r24fiaa þ ½ð1� 2r12Þr23ð1� r23Þida

þ ð1� 2r24Þ2r12ð1� r12Þidd�=½r13ð1� r13Þ�g
a9 ¼r24fiaa þ ð1� 2r34Þiad

þ ð1� r12 � r23Þ½ida þ ð1� 2r34Þidd�=ð1� r13Þg
ð8Þ

Equations (7) and (8) show that the marker-associated
quantitative genetic effects are entirely determined by
epistatic effects and linkage parameters and that sig-
nificant variation between the marker effects is an
indicator of the presence of epistasis. It should be noted
that r24 represents recombination between two QTL.
When r24¼ 0, the model degenerates to a single QTL.
Let fs be the frequency of the sth marker genotype, fst

the conditional probability of the tth family group given
the sth marker genotype of �L1s þ �L2s � 2�L3s and fstjk the
conditional probability of the kth QTL genotype (k¼ 1, 2,
y, 10) within the jth full-sib family (j¼ 1, 2, 3) from
the tth F2 parent within the sth marker genotype. The
expected mean squares must be calculated following an

Table 1 Genotypic frequencies at two linked loci given genotypes at the marker locus in an F2 population

Genotype MM Mm mm

AABB (1�r12)
2(1�r23)

2 r12(1�r12)r23(1�r23) r12
2 r23

2

AABb 2(1�r12)
2r23(1�r23) r12(1�r12)(1�2r23+2r23

2 ) 2r12
2 r23(1�r23)

AAbb (1�r12)
2r23

2 r12(1�r12)r23(1�r23) r12
2 (1�r23)

2

AaBB 2r12(1�r12)(1�r23)
2 (1�2r12+2r12

2 )r23(1�r23) 2r12(1�r12)r23
2

AB//ab 2r12(1�r12)r23(1�r23) r12
2 r23

2 +(1�r12)
2(1�r23)

2 2r12(1�r12)r23(1�r23)
Ab//aB 2r12(1�r12)r23(1�r23) r12

2 (1�r23)
2+r23

2 (1�r12)
2 2r12(1�r12)r23(1�r23)

Aabb 2r12(1�r12)r23
2 (1�2r12+2r12

2 )r23(1�r23) 2r12(1�r12)(1�r23)
2

aaBB r12
2 (1�r23)

2 r12(1�r12)r23(1�r23) (1�r12)
2r23

2

aaBb 2r12
2 r23(1�r23) r12(1�r12)(1�2r23+2r23

2 ) 2(1�r12)
2r23(1�r23)

aabb r12
2 r23

2 r12(1�r12)r23(1�r23) (1�r12)
2(1�r23)

2

The marker locus is assumed to locate between the QTL with recombination frequencies of r12 to its left flanking marker and r23 to its right
flanking QTL, respectively.
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analysis of variance under an unbalanced linear model
such as that described in Searle (1987, p 73).

The expected mean square between-marker geno-
types is

EMSa ¼
1

6�ðG� 1Þ n
XG
s¼1

mfsa2s

(

� n
XG
s¼1

fs½1þ ðm� 1Þfi�a2i

"

þ2ðm� 1Þ
X
sot

fsftasat

#

þ n
XG
s¼1

X10
t¼1

fst

"
½1þ ðm fs � 1Þfst�o2

st

þ 2 ðm fs � 1Þ
X

tokp10

fstfskostosk

#

� n
XG
s¼1

X10
t¼1

fsfst½1þ ðm� 1Þfsfst�o2
st

"

þ2ðm� 1Þ
X
sok

X
tolp10

fsfstfkfklostokl

#

þ
XG
s¼1

X3
j¼1

T2
j

X10
t¼1

X
k¼1

fstfstjkð1þ ðmnfs�1ÞfstfstjkÞg2stjk

"

þ2ðmnfs � 1Þ
X

t 0os 0p10

X
k 0ot 0

fstfstjkfs 0 t 0 fst 0 jk 0 gstjkgstjk 0

3
5

�
X3
j¼1

T2
j

XG
s¼1

X10
t¼1

X
k¼1

fsfstfstjkð1þðmn�1ÞfsfstfstjkÞg2stjk

"

þ 2ðmn� 1Þ

�
X

sos 0pG

X
tot 0p10

X
kok 0

fsfstfstjkfs 0 fs 0 t 0 fs 0 t 0 j 0 k 0 gstjkgs 0 t 0 j 0 k 0

#9=
;

þ s2e
ð9Þ

and the expected mean square within-marker geno-
types is

EMSw ¼ 1

6ðm� GÞ
XG
s¼1

X10
t¼1

mnfsfsto2
st

(

� n
XG
s¼1

X10
t¼1

fsfstð1þ ðm� 1Þfsfsto2
st

"

þ2ðm� 1Þ
X

tot 0p10

fsfstfsfst 0ostost 0

#

þ
XG
s¼1

X10
t¼1

X3
j¼1

T2
j mfsfst

X
k¼1

fstjkðn� 1Þfstjkg2stjk

"

þ2ðn� 1Þ
X
kok 0

fstjkfstjk 0 gstjkgstjk 0

#

þ
XG
s¼1

X10
t¼1

X3
j¼1

T2
j mfsfst

X
k¼1

fstjkðn� 1Þfstjkg2stjk

"

þ2ðn� 1Þ
X
kok 0

fstjkfstjk 0 gstjkgstjk 0

#

�
XG
s¼1

X3
j¼1

T2
j

X10
t¼1

X
k¼1

fstfstjkð1þðmnfs � 1ÞfstfstjkÞg2stjk

"

þ2ðmnfs � 1Þ
X

tot 0p10

X
kok 0

fstfstjkfst 0 fstj 0 k 0 gstjkgst 0 jk 0

#9=
;

þ s2e
ð10Þ

where G is the number of marker genotypes (G¼ 3 and 9
for the one- and two-marker model, respectively), ost is
the effect of the tth family group within the sth marker
genotype and gstjk is the effect of the kth QTL genotype
(k¼ 1, 2, y, 10) within the jth full-sib family (j¼ 1, 2, 3)
from the tth F2 parent within the sth marker genotype as
described before.

Power prediction
The above analysis demonstrates that the significance of
the epistatic variance can be evaluated by testing for
significance of the expected mean square between family
(EMSb) against that within full-sib family (EMSw) with or
without use of marker information.

As both the between- and the within-marker genotype
mean squares follows a noncentral w2 distribution with
degree of freedom predefined, the F statistic for
significance test of the between-marker variances given
by equation (10) follows a doubly noncentral F distribu-
tion. The power of the F test statistic can be calculated
from the probability as follows:

power ¼ Pr Fðn1; n2; l; dÞ4Fðn1; n2; l0; d0; 1� aÞ½ � ð11Þ
where F(n1, n2, l, d) represents a doubly noncentral F
variable with degrees of freedom n1, n2 and the
noncentral parameters l and d for the numerator and
denominator mean squares, respectively (Bulgren, 1971).

Calculation of noncentral parameters
The distribution parameters can be determined by
following Johnson et al. (1995, vol 2, p 131) for the
situations with or without incorporating marker infor-
mation.

When no marker information is involved in the
analysis, the noncentral parameter of the numerator of
the F-statistic is given by

l ¼
X10
t¼1

mft nb2t þ
P3
j¼1

T2
j ½
P
k¼1

ftjkð1�ftjkÞg2tjk�2
P
kol

ftjkftjlgtjkgtjl�
" #

P3
j¼1

T2
j

P
k¼1

ftjkð1� ftjkÞg2tjk � 2
P
kok 0

ftjkftjk 0 gtjkgtjk 0

#"
þ 6s2e

ð12Þ

which hasm degrees of freedom, when significance of the
expected sum squares given by equation (4) is tested.
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l ¼
X10
t¼1

mft
A1

A2
ð13Þ

which has m�1 degree of freedom, when significance of
the expected mean squares given by equation (3) is
tested, where

A1 ¼nðbt � �btÞ2 �
1

m

X
t¼1

ftð1� ftÞb2t � 2
X
toj

ftfjbtbj

2
4

3
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þ
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ftjkð1� ftjkÞg2tjk �
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2ftjkftjk 0 gtjkgtjk 0
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m
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j
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ftftjkð1� ftftjkÞg2tjk
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4
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X

tot 0p10

X3
j¼1

T2
j

X
k¼k 0

ftftjkft 0 ft 0 jk 0 gtjkgt 0 jk 0

3
5

and

A2¼
X3
j¼1

T2
j

X
k¼1

ftjkð1�ftjkÞ
"

g2tjk�2
X
kok 0

ftjkftjk 0 gtjkgtjk 0

#

þ6s2e

and the noncentral parameter of denominator is

d ¼
X10
t¼1

X3
j¼1

mftT
2
j

X
k¼1

nftjkg2tjk

( 

�
X
k¼1

ftjkð1þ ðn� 1ÞftjkÞg2tjk

"

þ2ðn� 1Þ
X
kok 0

ftjkftjlgtjkgtjk 0

#)!,
6s2e

ð14Þ

Under the marker-QTL model, the noncentral parameter
of the numerator statistic is

l ¼
XG
s¼1

B1

B2
ð15Þ

where
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The noncentral parameter of the denominator statistic is
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The power of function (11) can be evaluated using
the cumulative distribution of the doubly noncentral F
distribution, which was approximated by an infinite
Poisson-weighted series of multiple of incomplete beta
function (Bulgren, 1971).
It is noted that F(n1, n2, l0, d0, 1�a) stands for the upper

a-point (a¼ 0.05) of the doubly noncentral F distribution
with the same degree of freedom but the noncentral
parameters of numerator l0 and denominator d0 are
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calculated under the null hypotheses in equations (12)–
(16). For any given parameters of the doubly noncentral
F distribution n1, n2, l0, d0 and a given significance level a,
the threshold Fc was calculated from numerically
solving equation

R1
Fc
fðv1; v2; l0; d0; xÞdx ¼ a: In the present

studies, a was set to be 5%.
In the above analysis, we presented the formulation for

only one of all possible combinations of the marker-QTL
linkage orders. Following the same principles, we
formulated the analysis for other combinations but do
not present them here to simplify the paper.

However, when two markers are considered, m
families of L1, L2 and L3 populations are divided into
nine categories. One of the complications is that the two
genetic markers are so close to each other that some
expected frequency of some marker genotypes is too
small to be observed in practice. In the simulated
analysis, the actual observed marker genotypes may be
used for analysis of variance. When the expected number
of genotypes is less than two in the theoretical analysis,
we classify them as missing data. In this situation, some
statistics, such as the degree of freedom and the expected
sum of squares between- and within-marker genotypes,
must be correspondingly adjusted and approximated in
both theoretical and simulated analyses.

Simulation study and numerical analysis

Simulation study
To validate the analytical predictions aforementioned, we
carried out simulations that mimic a mating experiment
with TTC design (100 (families)� 20 (progenies per
family)). In our simulations, we varied genetic para-
meters and sample sizes. In particular, genetic crossover
events between genes at linked marker loci and/or QTL
were simulated according to the random walk ‘algo-

rithm’ described elsewhere (Luo and Kearsey, 1992) and
recombination interference was ignored. Each individual
phenotype was generated as its genotypic value from
equation (1) plus a random number sampled from a
standard normal distribution. The simulation for each of
simulated parameter configurations was repeated 1000
times. For each set of simulation parameters, the
simulation was also carried out under the null hypo-
thesis (iaa¼ iad¼ ida¼ idd¼ 0). The 95 percentile of the F
values derived from 1000 simulations under the null
hypothesis was used as 5% threshold to test for
significance of the corresponding alternative hypothesis.
The proportion of the significant tests in 1000 simulations
was defined as the empirical power, which was used to
compare with the theoretical prediction.

Results
Tabulated in Tables 2–4 are the expected sum of squares
between families, the expected mean square within full-
sib families and F statistic, together with their corre-
sponding standard deviations, over 1000 replicates of
simulations and those predicted from calculations based
on the theoretical analyses developed in the present
study. The theoretical predictions are in good agreement
with the simulated observations, validating the theore-
tical model presented here. In Tables 2–4, simulated
observations of the powers and the thresholds of
statistically testing for epistasis are shown together with
the theoretical predictions for all the simulated popula-
tions. The theoretical calculations of the power provided
adequate predictions to the corresponding simulated
values.

Table 2 shows that some kinds of epistasis are more
likely to be detected than others. TTC design indicated
higher power for testing additive-by-additive (i11) vari-
ance component than that for detecting additive-by-

Table 2 Comparison of powers for detecting epistatic components with a1¼ a2¼ 0.5, d1¼ d2¼ 0.25 and the genetic distance between the QTL
of 45 cM

Genetic parameter Simulated Predicted

iaa iad ida idd F̂c ESSb EMSw F̂ b̂ Fc ESSb EMSw F b

1.0 0 0 0 1.2478 1.629070.2280 1.331270.0344 1.239370.1750 44.1 1.2509 1.6242 1.3307 1.2205 42.98
0 1.0 0 0 1.2483 1.389370.1906 1.246570.0300 1.127970.1641 22.7 1.2509 1.3926 1.2459 1.1177 21.21
0 0.0 1.0 0 1.2439 1.389370.1921 1.245470.0310 1.133770.1593 23.6 1.2509 1.3926 1.2459 1.1177 21.21
0 0 0 1.0 1.2499 1.365370.1851 1.272470.0306 1.062570.1614 13.2 1.2509 1.3721 1.2725 1.0782 14.63

Expected sum of squares between families (ESSb), the expected mean square within full-sib families (EMSw) and F statistic, together with
their corresponding standard deviations, and predicted from theoretical calculation, as well as the observed threshold (Fc) and powers (b)
and their corresponding theoretical predictions in analysis of variance are given. The same is true for Tables 3 and 4.

Table 3 The effect of linkage and linkage phases on epistatic detection with a1¼ a2¼ 0.5, d1¼ d2¼ 0.25 and iaa¼ iad¼ ida¼ idd¼ 0.5

Distance (cM) Linkage phase Simulated Predicted

F̂c ESSb EMSw F̂ b̂ Fc ESSb EMSw F b

15 Coupling 1.2557 1.254370.1803 1.185070.0291 1.059270.1551 10.1 1.2533 1.2503 1.1855 1.0546 10.55
Repulsion 1.2317 1.256770.1800 1.256270.0289 1.000270.1455 6.9 1.2494 1.2638 1.2559 1.0063 5.77

30 Coupling 1.2603 1.399270.1909 1.232870.0299 1.135770.1581 21.3 1.2526 1.3946 1.2325 1.1315 23.67
Repulsion 1.2670 1.333070.1924 1.280770.0292 1.039370.1524 7.8 1.2501 1.3235 1.2801 1.0339 8.47

45 Coupling 1.2422 1.491170.2141 1.253670.0303 1.190170.1732 36.8 1.2523 1.4968 1.2534 1.1941 37.55
Repulsion 1.2614 1.389970.1976 1.290270.0310 1.077870.1552 12.1 1.2506 1.3922 1.2923 1.0773 14.23
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dominance (i12 or i21) variance, whereas the design
showed lowest power for detecting dominance-by-
dominance (i22) variance component, conditional on the
same genetical background. Table 3 shows that there is a
trend toward increase in the power as the genetical
distance between the two QTL increases, which implies
that epistasis may be more difficult to be detected when
the QTL are tightly linked. The test tends to be more
efficient when the QTL are linked in coupling than that
in repulsion, which was verified by Pooni and Jinks
(1976) in a theoretical study of the same design. The
effects of heritability and dominance ratio on epistatic
detection are summarized in Table 4. The decline of
heritability (narrow sense heritability) and dominance
increases the power for detecting epistasis and the power
reaches the highest value when the additive and
dominance effects approach zero on the condition that
the epistatic effects are constant.

Having demonstrated the superiority of the theoretical
predictions without marker information, we now imple-
ment the theoretical analyses when marker informa-
tion(s) exists. In the same genetic background (i.e., we set
a1¼ a2¼ 0.5, d1¼ d2¼ 0.25 and iaa¼ iad¼ ida¼ idd¼ 0.5 in
all the simulated populations), 10 populations were
simulated for 10 different sets of parameters as summar-
ized in Table 5. To allow fair comparisons, the genetic
distance between two QTL was set to 45 cM in all
simulations.

The TTC has greater power to detect epistasis when
marker information exists. Comparison among popula-
tions 1, 7, and 10 shows that the ranking of epistatic
detection is AM1M2B4AM1B4AB, where loci A and B
are QTL and M1 and M2 are marker loci, and the power is
determined by the marker that is closest to the QTL
when two markers locate at the same side of QTL
(comparison between populations 6 and 9). The relative
position of QTL and markers may affect the power of
epistatic detection. There is a trend toward decrease in
the power of the epistatic detection as the number of
marker loci between the two QTL decreases (comparison
among populations 1, 3, 5 and 6; see also comparison
between populations 7 and 9).

Comparing the power of epistatic detection with one-
marker, two-marker and without marker information, it
will be seen from Table 5 that the standard deviations of
estimated expected mean square with one marker
indicated higher value than that with two markers,
whereas the corresponding value without marker in-
formation showed the lowest value.

Using marker information, tabulated in Table 5 are
expected mean squares of between-marker genotype,

within-marker genotype and the F ratio estimated from
simulation, together with their corresponding standard
errors predicted from theoretical calculations, as well as
the observed powers and their corresponding theoretical
predictions. It can be seen from Table 5 that theoretical
predictions of the powers using equation (11) also
provide an adequate approximation for the simulated
values in all 10 populations.

Discussion

The TTC, which was originally proposed by Kearsey and
Jinks (1968), provides not only a direct test for epistatic
variance component but also unbiased estimates of
additive and dominant components whenever epistasis
among polygenes is absent. It has been shown that it is
the most advanced design so far to investigate the
genetic architecture of both experimental and natural
populations (Kearsey and Jinks, 1968). The analysis of
designs with or without marker information, presented
here, provides useful predictions of statistical power.
Our comments are confined to two-locus epistatic effects
but these modifications indicate the general issues.
To calculate the power we need the distribution of the

test statistics under both the null and the alternative
hypothesis. Under the assumption of the fixed model, as
both between- and within-marker genotype mean
squares follow noncentral w2 distribution, the F statistic
for significance test of the between-marker variances (or
between families) given follows a doubly noncentral F
distribution under both alternative and null hypothesis.
The power for a given degree of freedom, significance
level and the noncentral parameters of numerator and
denominator have been calculated (Bulgren, 1971;
Johnson et al., 1995). Derivations in the present paper
have shown that the power for detecting epistasis can be
expressed as a function of design parameters and
parameters describing genetic properties of the marker
and QTL. The powers from theoretical evaluation agree
very well with those from stochastic simulation under a
wide range of situations, suggesting reliability of the
theoretical analysis.
Assuming no interference (in recombination), we

demonstrate that there is an interaction between epistasis
and linkage information that is responsible in part for the
improvement in sensitivity of detection under the finite
locus model, which is very helpful in understanding
where the increase in power comes from using markers.
However, in real experimental organisms, genetic

interference will affect crossovers, as has been well
known since Haldane (1919). Interference will have the

Table 4 Comparison of powers of additive effects and dominance effects for detecting epistasis with iaa¼ iad¼ ida¼ idd¼ 0.5 and the genetic
distance of 30 cM between the QTL

Genetic parameter Simulated Predicted

a1 d1 a2 d2 F̂c ESSb EMSw F̂ b̂ Fc ESSb EMSw F b

0.50 0.25 0.50 0.25 1.2397 1.386970.1969 1.232370.0298 1.126270.1616 24.8 1.2526 1.3946 1.2325 1.1315 23.67
1.00 0.25 1.00 0.25 1.2467 1.904770.2726 1.750770.0490 1.088970.1581 15.1 1.2591 1.9241 1.7520 1.0982 17.18
1.50 0.25 1.50 0.25 1.2536 2.862370.4157 2.690970.0892 1.064670.1567 13.1 1.2602 2.8545 2.6922 1.0602 13.44
0.50 0.50 0.50 0.50 1.2499 1.440170.2093 1.275470.0324 1.130370.1678 24.9 1.2579 1.4379 1.2758 1.1270 21.16
0.50 1.00 0.50 1.00 1.2514 1.728870.2435 1.557570.0384 1.110870.1591 18.8 1.2586 1.7293 1.5572 1.1105 18.98
0.00 0.00 0.00 0.00 1.2365 1.320670.1861 1.154870.0295 1.144270.1724 28.8 1.2448 1.3176 1.1555 1.1402 25.49
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effect of decreasing the apparent genetic distances
between the loci along the linkage group (McPeek and
Speed, 1995), which will result in a decrease in the power
for QTL detection (Xu et al., 2005). The simulation
experiments in Table 3 show that there is a trend in the
decrease of the power of the epistatic detection as the
genetic distance between two QTL deceases. In view of
its importance, the problem of interference deserves
further investigation.

Wade (2002) identified additive-by-additive epistasis
as one of the most important kinds of epistasis because it
contributed most heavily to the generation of new
additive variance. Table 2 shows that the TTC design
indicated higher power for testing additive-by-additive
(iaa) variance component than that for detecting additive-
by-dominance (iad or ida) and dominance-by-dominance
(idd) variance component, conditional on the same
genetical background. Because additive-by-additive
epistasis are relatively easier to detect than other types
of epistasis, it seems that more examples of additive-by-
additive epistasis are available from QTL studies, for
instance, in the mouse, additive-by-additive epistasis has
been shown to characterize genes affecting lung tumors
(Fijneman et al., 1996).

Pooni and Jinks (1976) demonstrated the greater power
of the TTC for detecting epistasis, compared to other
alternatives without marker information. Our investiga-
tion, presented here, differs from that of Pooni and Jinks
in several aspects. Firstly, we develop a quantitative
genetics model and method for detecting epistasis by
making use of the TTC experiments with marker
information and exploring the statistical power of an
experimental design with or without incorporating
marker information. Secondly, Pooni and Jinks (1976)
focus on exploring statistical power for detecting
complementary and duplicate epistasis under the in-
finitesimal model, whereas the statistical power for
detecting arbitrary types of epistasis of the mating
design was assessed under a finite locus model. In
addition, it could be interesting to compare the statistical
power for detecting epistasis to that of Pooni and Jinks’s.
Table 4 shows that the decline in heritability (narrow
heritability) and dominance results in an increase in the
power for detecting epistasis. In contrast, Pooni and Jinks
found that there was a trend toward an increase in the
power as the heritability and dominance ratio increase.
The reason for this contradiction is that the epistatic
effects are expressed as a linear function of additive and
dominance effects in Pooni and Jinks (1976), for example,
i2aa ¼ a2=10, i2ad ¼ i2da ¼ ða2 þ d2Þ=10 and i2dd ¼ d2=10. It is
obvious that the power will be improved in this
formulation, because the epistatic effects will increase
as heritability and dominance ratio increase. Their linear
function (above) is hard to justify; consequently, their
results may be misleading.

The TTC may have increased power for epistatic
detection when marker information exists. More impor-
tantly, the availability of the molecular markers offers the
opportunity for detecting pairwise interactions between
QTL. The simulation experiments show that there is a trend
toward decrease in the power for detecting epistasis as the
number of marker loci between the two QTL decreases.
Therefore, one of the optimal choices for increasing the
power of epistatic detection is to explore more molecular
markers between two linked epistatic QTL.T
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Although prediction of power in more general models,
with recombination interference, multiple marker alleles,
multiple markers, natural population, etc., requires
tedious algebra, it is relatively simple to implement the
analysis of variance with both real and simulated
data. Hence analysis of variance provides a useful
tool to enable quick screening of the genetic architecture
of a population preliminary to the use of computation-
ally demanding methods such as maximum likelihood or
a Bayesian approach. The maximum likelihood or
Bayesian approach may, however, provide more power
as well as a better framework for the estimation of
epistatic effects, which has been well developed in QTL
mapping (Kao et al., 1999; Carlborg and Haley, 2004;
Yi et al., 2005).
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