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An important question emerging from theoretical studies of
mating system evolution is whether the fitness of a randomly
extracted, fully inbred genotype will exceed the mean of
outbred individuals. We introduce two statistics (I1 and I2)
related to the probability of extracting a high line. I1 and I2 can
be estimated from the family structured experimental designs
typically used to estimate inbreeding depression (ID).
Maximum likelihood procedures are developed from an

explicit genetic model. These yield parameter estimates
and provide the likelihoods necessary to test hypotheses, for
example, whether population-level ID is nonzero. Finally, we
describe a new publicly available computer program titled
‘IDG’ (Inbreeding Depression Genetics) to execute these
procedures.
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Introduction

Inbreeding depression (ID) is the decline of fitness-
related traits that frequently occurs with inbreeding. The
magnitude of ID and its genetic basis are critical factors
in the evolution of plant mating systems and also have
important implications for agriculture and conservation
(Darwin, 1876; Charlesworth and Charlesworth, 1987;
Lynch et al, 1995; Keller and Waller, 2002). Historically, ID
has been measured at the population level by comparing
the mean phenotypes of inbred and outbred individuals.
More recently, interest has focused on ID at the level of
individual families. ID is estimated from the difference in
mean fitness between inbred and outbred individuals
within the same family, oftentimes the progeny of a
single maternal plant. Variation in ID among families has
been demonstrated within a variety of natural plant
populations (eg, Agren and Schemske, 1993; Carr et al,
1997; Mutikainen and Delph, 1998; Chang and Rausher,
1999; Vogler et al, 1999; Takebayashi and Delph, 2000;
Fishman, 2001; Rao et al, 2002; Stone and Motten, 2002).

Why is family-level ID interesting? Some theoretical
studies suggest that it may be a more important
determinant of mating system evolution than popula-
tion-level ID (Campbell, 1986; Holsinger, 1988; Uyenoya-
ma et al, 1993; but also see Charlesworth et al, 1990;
Shultz and Willis, 1995). Consider a plant population that
is self-compatible but predominantly outcrossing. A
mutation occurs that induces complete self-fertilization.
If this mutation escapes immediate loss, it will become
fixed within an ‘inbred lineage’, a genotype that is fully
homozygous for alleles residing in the ancestral outbred
genotype. This genotype is essentially self-perpetuating

in that selfed progeny are genetically identical (or nearly
so) to their parents. If the constellation of alleles fixed
within the lineage is favorable, it may displace the
background population of sexual genotypes (Lande and
Schemske, 1985). Of course, the spread of the selfing
genotype is greatly facilitated if it can also distribute
pollen to other plants while self-fertilizing its own ovules
thus exploiting the ‘cost of sex’ (Maynard Smith, 1978).

The preceding description, in which a novel mutation
induces complete selfing, is idealized. Genetic modifiers
that cause incremental increases in selfing rate will not
become isolated within self-perpetuating lineages and
the evolutionary dynamics are a great deal more
complicated (see Uyenoyama and Waller, 1991; Uye-
noyama et al, 1993). However, the example does illustrate
why interest has at least partially shifted from popula-
tion to family level. It also points to a conceptual
difficulty with measuring ID as a difference between
inbred and outbred individuals within the same family.
Over the long run, a selfing lineage will be competing
with the entire background population and not just the
outbred progeny of that family. Low or even negative
family-level ID can result because the mean fitness of
outbred progeny from that family is unusually low. This
would not necessarily bode well for a selfing mutation
that happens to occur within that family.

From an empirical point of view, we would like to
determine the probability that a randomly extracted,
fully inbred genotype will have a mean fitness that
exceeds the mean of outbred genotypes within the
population. Here, ‘random extraction’ implies that alleles
fix randomly within a lineage over successive genera-
tions of selfing and that the lineage is founded by a
random outbred genotype. In fact, populations of inbred
lines have been extracted from several model species and
measurements from these populations can directly
estimate this probability (Simmons and Crow, 1977;
Takano et al, 1987; Hughes, 1997; Willis, 1999b). As we
discuss in greater detail below, most ID studies contain
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data sufficient for at least an indirect appraisal. The
generation of high performing inbred lines is relevant
not only to mating system evolution, but also has direct
bearing on agriculture (Crow, 1987).

We introduce two statistics (I1 and I2) related to the
probability that a random inbred line will exceed the
outbred mean phenotype in the population. Neither I1
nor I2 yields the probability directly, except under
specific assumptions about the fitness distribution across
inbred lines. However, each should be positively
correlated with this probability and thus represents a
useful abstraction of the genetic information resident
within ID experiments. In the second section of the
paper, I1 and I2 are directly estimated from the observed
distribution of inbred line means within a large experi-
mental study of Mimulus guttatus (Kelly, 2005a). Esti-
mates from multiple traits support our contention that I1
and I2 are correlated with the probability that a line will
exceed the outbred mean. The third part of the paper
develops methods for estimating I1 and I2 from three
standard experimental designs. The estimation proce-
dures are based on an explicit genetic model and provide
a likelihood ratio test for the presence of population-level
ID. Finally, we describe a new computer program titled
‘IDG’ (Inbreeding Depression Genetics) to execute these
procedures.

ID statistics
Let M denote the outbred mean for the trait under
consideration. The mean value of fully inbred genotypes
is defined to beM�b, where b is the ‘inbreeding load’. As
inbreeding typically depresses trait values, we expect
that b should usually be positive. Finally, let VGI denote
the (genetic) variance among fully inbred lines. Given
these definitions, we will consider the following two
aggregate statistics:

I1 ¼
ðM� bÞ2 þ VGI

M2
ð1Þ

and

I2 ¼
ffiffiffiffiffiffiffiffi

VGI

p

b
ð2Þ

Higher values for I1 and I2 imply an increased
probability that if an outbred genotype produces a fully
inbred descendant, its phenotypic value (fitness) exceed
the outbred mean.

The first statistic (I1) is derived from Chebyshev’s
inequality, an identity concerned with the probability of
extreme outcomes (Feller, 1968, p 233). Let the random
variable X signify the fitness of a randomly extracted
inbred line. Chebyshev’s inequality implies:

Pr ob½X � M	 
 E½X2	
M2

¼ ðE½X	Þ2 þ Var½X	
M2

ð3Þ

assuming that X is non-negative. Noting that E[X]¼M�b
and Var[X]¼VGI, the right-hand side (RHS) of Equation
(3) becomes equal to I1.

Chebyshev’s inequality only places an upper bound on
the probability that a line exceeds the outbred mean.
In fact, I1 may often exceed 1. The actual probability
depends on the shape of the distribution for X. If the
distribution is normal, the second statistic (I2) provides
the information necessary to predict probabilities. The

fraction of density in the ‘tail’ of the normal distribution
is a simple function of the standard deviation (here, the
tail is the collection of inbred lines that exceed the
outbred mean). Referring to tabulations of the standard
normal (eg, Rice, 1989, p 558), we find that the
probability that a random line exceeds M is only 0.023
if I2¼ 1

2. This probability increases to 0.159 if I2¼ 1 and to
0.309 if I2¼ 2.
I1 and I2 are dimensionless ratios, a feature that

facilitates comparisons across different traits and studies.
However, there are important statistical issues associated
with ratios of estimators (Rice, 1989, pp 146–147). In
particular, substantial bias is introduced if the denomi-
nator has a large standard error (SE). This is unlikely to
be a difficulty for I1, because in all but the smallest
experiments, the SE of M should be small relative to its
estimated value. However, this need not be true for
estimates of b. Estimates for I2 are ruled ‘suspect’ by the
IDG program if the SE of b is greater than 1

4 its estimated
magnitude.
I1 requires that trait values are positive which should

usually be true of measurement on their original scale.
However, log-transformation of fractional values, for
example, proportion surviving, will yield negative
values. This can be remedied simply by adding a
constant to all measurements before calculating I1. A
second issue concerns the logical derivation of I1. We
assumed that inbreeding decreases trait values and that
high trait values are favorable. However, for characters
such as time to sexual maturity, inbreeding may increase
trait values and lower values may be favorable. For such
situations, I1 can be adapted to predict the emergence of
low lines simply by reversing the sign of b before
substituting it into Equation (1), thus insuring that
(M�b)2oM2.

A direct study of I1 and I2 in M. guttatus
A large collection of inbred lines have been extracted
from a single natural population of M. guttatus (Willis,
1999a; Kelly and Arathi, 2003). Each line was initiated
from a single outbred genotype and synthesized by
successive generations of single seed descent (self-
fertilization with random selection of progeny). These
lines each had between seven and nine generations of
selfing in their ancestry and line inbreeding coefficients
greater than 0.99 (high homozygosity confirmed with
genetic markers: Willis, 1999a; Liza Holeski, unpublished
results). As part of a larger breeding design, the lines
were randomly paired and crossed to produce F1
families. Each line was also self-fertilized to produce a
large collection of genetically identical seeds. Progeny of
both types were grown simultaneously and each plant
was measured for a number of morphological traits and
male fitness components. A detailed description of the
crossing and measurement procedures is given else-
where (Kelly, 2005a).
Figure 1 illustrates the distribution of inbred line

means for corolla width, the number of pollen grains per
flower, and the estimated number of viable pollen grains
per flower. The outbred mean, M, is superimposed upon
these distributions. Estimates for M, b, and VGI were
obtained by applying one-way ANOVAs to either the
collection of F1s (for M) or inbred line progeny (for b and
VGI). Families, either F1 or line, define the groups in
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these ANOVAs. Using F1 families, the ANOVA grand
mean (m) estimates M. With the lines, m estimates (M�b)
and the among-group variance estimates VGI. The values
for I1 and I2 were obtained by substituting the estimates
for M, b, and VGI into Equations (1–2).

I1 and I2 correlate positively with the observed
proportion of inbred lines that exceed the outbred mean
(Figure 1). Corolla width yields the highest values for I1
and I2, and for this trait, 27 of 143 inbred line means

exceed M. For total pollen per flower, I1 and I2 are
substantially reduced and only nine inbred lines exceed
M. The lowest values for I1 and I2 were obtained for the
estimated number of viable pollen grains per flower,
where only seven lines had means greater than M. As
line means are estimated with error, these numbers likely
overestimate the proportion of lines that exceed the
outbred mean. If we include only lines that exceed M by
two SEs, the number of high lines is reduced to 12 for
corolla width, two for pollen number, and three for
viable pollen per flower.

Estimation of I1 and I2 from standard designs
For the data of Figure 1, I1 and I2 are superfluous because
one can directly estimate the probability of extracting a
high performing inbred line. However, most ID studies
do not involve a large collection of fully inbred lines.
Oftentimes, individuals are only partially inbred, for
example, the selfed progeny of outbred parents. How-
ever, because most ID experiments are breeding designs
(see Figure 2), I1 and I2 can still be estimated by applying
a quantitative genetic model to the data. In a randomly
mating population, the genetic variance is typically
parsed into two components, the additive variance, Va,
and dominance variance, Vd (Lynch and Walsh, 1998, Ch
4–7; Falconer and Mackay, 1996, Ch 8–9). With inbreed-
ing, the genetic variance depends not only on Va and Vd,
but also on several ‘inbreeding components’ (Harris,
1964; Cockerham, 1983; Shaw et al, 1998): the covariance
of additive and dominance effects (denoted Cad), the
inbreeding dominance variance (Vdi), and the sum of
squared ID at individual loci (H*). If there are only two
alleles per locus, the number of terms is reduced by one
because H*¼Vd (Cockerham and Weir, 1984). These
components determine not only the genetic variance, but
also the covariances among relatives. In the analyses
described below, we assume that quantitative trait loci
(QTL) are in linkage equilibria, at least in the experi-
mental population if not the natural population.

I1 and I2 require estimates for M, b, and VGI. The most
challenging is VGI, which is equal to 2 Vaþ 4 CadþVdi

(Cockerham and Weir, 1984). However, some experi-
mental designs allow us to estimate VGI without
estimating the individual components. Estimation of M
and b is straightforward given the sample means for both
inbred and outbred plants, although it is critical that f is
known for the inbred individuals. As b represents the
difference in mean phenotype between outbred and fully
inbred (f) plants, the observed difference must be
multiplied by a factor if inbred individuals have fo1.
Most frequently f¼ 0.5, in which case, b is estimated
as twice the difference between inbred and outbred
samples.

The crossing scheme for three experimental designs is
depicted in Figure 2. Design 1, in which each family in
centered on a single maternal plant (Figure 2a), is most
commonly used. We assume that maternal plants are
randomly selected from the background population and
all are either outbred or fully inbred (f¼ 1). Each
maternal plant is self-fertilized to produce one set of
progeny (denoted Inbred subfamily in Figure 2a) and
receive pollen from one or more sires to produce an
additional set of progeny (denoted oubred subfamily).
Progeny from both types of subfamily are grown

Figure 1 The distributions of inbred line means are given for (a)
corolla width, (b) total pollen per flower, and (c) viable pollen per
flower.
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simultaneously and measured for a range of traits related
to fitness (eg, germination, survival, number of flowers
produced, pollen produced per flower, ovules per
flower). The full set of progeny from each pair of
parental plants (both outbred and inbred) constitutes a
family in this design.

There are three different comparisons among relatives:
COO is the covariance between individuals within
outbred subfamilies, CSS is the covariance between
individuals within inbred subfamilies, and COS is the

covariance between outbred and inbred individuals
within the same family. In this case, the covariances
within groups are equivalent to variances among group
means: COO is equal to the variance among the true
means of outbred subfamilies and CSS is equal to the
variance among true means of inbred subfamilies. For
the genetic analysis of this design, we distinguish four
cases (the factorial combinations of two factors): mater-
nal plants are either outbred (eg, Koelewijn et al, 1999) or
inbred (eg, Agren and Schemske, 1993), and there is
either a single sire per dam (eg, Kalisz, 1989) or that
many (unrelated) sires contribute to the pollen mixture
transferred to each dam (eg, Fishman, 2001). Let B denote
the observed difference in mean phenotype between
inbred and outbred plants. If the maternal parents are
outbred, then b¼�2B. If maternal parents are fully
inbred, then b¼�B.
An important limitation of Design 1 is that all

individuals are related through a single maternal plant.
As a consequence, variances and covariances are
potentially contaminated by maternal effects. To extract
genetic variance components, and thus estimate I1 and I2,
we must assume that maternal effects are absent, an
assumption not necessary for Designs 2 and 3. Using the
parameterization of Cockerham and Weir, 1984 (see
Appendix), the predicted genetic variance among fully
inbred lines can be calculated from the observed
covariances:

Parents outbred

Single sire per dam:

VGI ¼ 2ðCOO þ VI � VOÞ
ð4aÞ

Many sires per dam:

VGI ¼ 8=5 ð3COO � 2COS þ CSS þ VI � VOÞ
ð4bÞ

Parents fully inbred

Single sire per dam:

VGI ¼ 1=4 ðCOO þ 3CSS þ VI � VOÞ
ð4cÞ

Many sires per dam: VGI ¼ CSS ð4dÞ

where VO is the variance among outbred plants and VI is
the variance among inbred plants. In all cases, VGI¼ 0 if
RHS is negative.
Estimation of I1 and I2 from Design 1 is illustrated by

reanalysis of data from a study of Collinsia verna (Kalisz,
1989). Table 1 summarizes the output of the IDG
programs (described below) for three characters, seed
mass, day of germination, fecundity. Each character is
analyzed on the original scale of measurement and after
log-transformation. Consistent with the analyses of
Kalisz (1989), IDG indicates significant population-level
ID for each trait (b40). I1 and I2 are greatest for seed
mass, intermediate for days, and lowest for fecundity.
Transformation generally increases I1 and I2, with the
pronounced effect on I1 for fecundity. Most I2 values are
suspect due to the relatively large SEs associated with b
estimates.
The IDG program uses maximum likelihood to

estimate the genetic parameters for Designs 1, 2, and 3
of Figure 2. The fitted model(s) are contingent on the
design and thus so are the estimated parameters. In all

Figure 2 A diagram of the crosses and self-fertilizations design
used in (a) Design 1, (b) Design 2, and (c) Design 3. Small filled
circles denote individual plants. Double-headed arrows denote
comparisons that define observational variance components. The
arrows with broken lines represent transmission of a gamete.
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cases, however, the likelihood analysis yields SEs for
parameter estimates from the asymptotic dispersion
matrix. The likelihood values from different models also
provide a means of hypothesis testing using likelihood
ratios. For all designs, one can test for population-level
ID, that is, whether b¼ 0. Tests regarding the variance
components are specific to each design. These programs
are written in VBA (Visual Basic for Applications) and
run within the Microsoft Excel environment. The ‘Add-
In’ can be downloaded from http://www.ku.edu/~eeb/
faculty/kellyj.html. There is also a sample data set for
each design and a detailed description of the relevant
studies.

In Design 2 (Figure 2b), each family is a small diallel
synthesized by reciprocally crossing and selfing two
parents (eg, Willis, 1993). Each family contains four
subfamilies, two selfed progeny sets and two oubred
progeny sets. The same genetic relationships exist within
Design 2 as are present in Design 1, that is, COO, COS, and
CSS. However, because crosses are performed recipro-
cally, we do not need to assume that maternal effects are
absent. We can parse both COO and COS according to
whether individuals share the same maternal parent or
not. The variance of maternal effects, VM, contributes to
covariances among individuals that are related through
a maternal parent but not to relationships limited to
a common male parent. As with Design 1, we must
distinguish cases where the parents are outbred
(b¼�2B) and the parents are fully inbred (b¼�B). We
can use Equation (4a) to estimate VGI when parents
are outbred and Equation (4c) when parents are fully
inbred. However, the variances and covariances are
discounted for any contribution of maternal effects
(Figure 2b). In fact, an analysis of the sample data set
that accompanies the program, Willis’ study of M.
guttatus (Willis, 1993), clearly demonstrates a significant
contribution of maternal effects to the genetic variance in
fecundity.

Design 3 is a direct extension of the standard full-sib/
half-sib scheme routinely used to estimate heritability
(Figure 2c). A series of sires is each mated to a distinct set
of unrelated dams. Each parent (sires and dams) is also
self-fertilized (eg, Kelly and Arathi, 2003). Here, we
distinguish two different comparisons among oubred
siblings, the covariance among full sibs (COO), and the
covariance among half-sibs (CHS). For this design, it is
most efficient to directly estimate the causal components,
Va, Vd, Cad, and Vdi, because they are fewer than the
number of observational comparisons within the design
(Shaw et al, 1998).

Design 3 is illustrated by an application to another
study of M. guttatus. Kelly and Arathi (2003) used fully
inbred parents in a breeding design with two dams per
sire. The progeny were grown to maturity in the
greenhouse and measured for flower morphology,
development rate and male fitness components. Genetic
parameter estimates for corolla width, total pollen per
flower, and viable pollen per flower are given in Table 2.
Log-tranformed values for the pollen traits were also
analyzed. Likelihood ratio tests confirm that all traits
exhibit significant population-level ID. Tests for maternal
effects were not significant. Estimates of I1 and I2
from the Design 3 study of M. guttatus (Table 2) are
substantially lower than the comparable values given in
Figure 1 for corolla width, total pollen per flower, and
viable pollen per flower. This is notable given that the
two experiments use parents extracted from the same
natural population. A critical difference is that the plants
of Table 2 were grown in a greenhouse with a mixture of
natural and artificial light, while those used for Figure 1
matured in a growth chamber. Plants develop more
rapidly in the growth chamber (by an average of about
10 days) and produce their first flower at a smaller size.
This comparison of studies suggests that the difference
between inbred and outbred plants becomes proportio-
nately larger with development (aging).

Table 1 Parameter estimates (and SE) from the reanalysis of data from Kalisz (1989)

Trait M b VGI I1 I2

Seed mass 340.4 (7.1) 36.2 (15.9) 5045 (2034) 0.84 1.96a

Day of germination 9.92 (0.60) 2.70 (1.22) 4.02 (12.73) 0.57 0.74a

Fecundity 45.3 (2.3) 22.6 (5.1) 0.0 (249) 0.25 0.00

Log-transformed (base 10) values
Seed mass 2.52 (0.01) 0.056 (0.022) 0.0135 (0.0036) 0.96 2.09a

Day of germination 0.86 (0.03) 0.18 (0.06) 0.00 (0.02) 0.62 0.00a

Fecundity 1.597 (0.016) 0.235 (0.047) 0.0 (0.016) 0.73 0.00

aEstimate for I2 is suspect due to estimation error (high SE) associated with b.

Table 2 Estimates (and SE) for VGI, M, and b from the re-analysis of data from Kelly and Arathi (2003) and Kelly (2003)

Trait M b Va+Vd VGI I1 I2

Corolla width 19.30 (0.16) 1.86 (0.16) 1.91 3.38 (0.62) 0.83 0.99
Total pollen per flower 12250 (214) 5382 (256) 4041000 5940000 (30890) 0.35 0.45
Viable pollen per flower 10220 (232) 5551 (257) 5500000 5588000 (124800) 0.26 0.43

Log-transformed fitness measures
Ln (pollen per flower) 9.31 (0.02) 0.73 (0.04) 0.016 0.19 (0.03) 0.85 0.60
Ln (viable pollen) 9.06 (0.03) 1.07 (0.05) 0.038 0.44 (0.06) 0.78 0.62

Natural log-transformed values for the pollen traits are also analyzed. The estimate genetic variance among outbred genotypes (Va+Vd) is
reported.
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Discussion

Genetic purging is often invoked in arguments about the
evolution of mating systems. Purging is the effect of
selection on deleterious mutations, and in particular, the
accelerated elimination of such mutations as inbreeding
reveals them in homozygotes (Barrett and Charlesworth,
1991; Byers and Waller, 1999). Purging can occur at the
population level wherein the genetic load (measured as
population-level ID or b) is reduced by generations of
increased inbreeding. However, it has also been hy-
pothesized to occur at the scale of individual families or
‘selfing lineages.’ A genetic modifier that increases the
rate of selfing might effectively purge deleterious
mutations from its lineage, yielding descendants that
are relatively low in genetic load (Uyenoyama et al, 1993,
review much of the relevant theory).

It is critical to recognize that selection is only one source
of associations between mating system modifiers and the
background genotype that determines fitness. All new
mutations occur in a novel background. If a mutation
induces selfing and thus initiates an inbreeding lineage,
the background genotype will subsequently change due to
Mendelian segregation, that is, random fixation of alleles
at loci that were heterozygous in the initial genotype.
Purging within lineages makes this fixation process
nonrandom to some degree. However, the simulation
study of Shultz and Willis (1995) suggests that stochastic
and/or segregation effects have a much greater impact on
variation in ID among families than does lineage-specific
purging. The same conclusion may often apply when
considering associations between mating system modi-
fiers and fitness determining alleles at other loci.

The two statistics developed here, I1 and I2, essentially
measure the effects of variation in initial background and
subsequent segregation within selfing lineages. These
processes determine VGI, the variance among fully
homozygous genotypes. I1 and I2 are simple functions
of VGI and each quantity should be positively related to
the probability that a randomly extracted inbred line will
exceed the mean phenotypic value (fitness) of outbred
genotypes in a population. Neither quantity yields the
probability directly except under special circumstances.
However, some guidance for interpreting values of I1
and I2 is provided by Figure 1. A randomly extracted line
is quite unlikely to exceed M if I1o0.5 or I2o1. A
substantial fraction of lines may exceed the outbred
mean if I141 or I242. Of course, I1 and I2 will likely be
informative only with reasonably accurate estimates for
M, b, and VGI. In our reanalysis of the Collinsia study
(Kalisz, 1989), I2 estimates for ‘seed mass’ and ‘days to
germination’ are deemed suspect because the SE
associated with b is relatively high (Table 1).

The quantitative relationship between the high line
probability and our statistics (I1 and I2) depends on the
form of the distribution of phenotypic (fitness) values.
Comparisons of I1 or I2 across traits or taxa are thus most
meaningful if the relevant distributions are similar in
character. The distribution is also important for the
adequacy of the underlying quantitative genetic model,
which assumes that genetic loci combine additively to
determine phenotype. Scale transformations are often
applied (the logarithm, square-root, or arcsin square-
root) to make data more amenable to analysis. For our
purposes, Wright (1952) outlined the most relevant

criteria for scale transformation: ‘The best scale for the
purpose of analysis is one on which the effects of factors
(genetic and environmental) are as nearly additive as possible.’
For example, Wright’s criteria suggest a log-transforma-
tion of each trait in the Kalisz (1989) data set (Table 1)
because the original distributions were right-skewed
while log-transformation yields approximate normality
within both outbred and inbred samples.

Applications
The IDG program is devised to facilitate the application
of quantitative genetic models to studies of ID. The
‘fitness components’ measured in ID studies are gen-
erally quantitative traits. While analysis of variance
(ANOVA) is typically used for data analysis (Johnston
and Schoen, 1994), the quantitative genetic perspective
can provide a more accurate description of variation. For
example, even the simplest genetic models (Equations
(4a–d)), predict that the variance among inbred families
will differ from the variance among outbred families
within an ID breeding design. These two variances are
constrained to be equal in the standard ANOVA (Kelly,
2005b; see also Fox, 2005; Moorad and Wade, 2005). Both
generic statistical and quantitative genetic models
impose simplifying assumptions, but these assumptions
become explicit when data are analyzed within a
quantitative genetic framework. Finally, the motivation
for most ID studies of natural populations is to address
evolutionary questions. It is sensible to test predictions
derived from genetic models (eg, Charlesworth et al,
1990; Uyenoyama and Waller, 1991) by applying ex-
plicitly genetic models to the data.
The reanalysis of the sample data sets illustrates how

nontrivial results can emerge from a quantitative genetic
treatment data (Tables 1 and 2). Contrast the variance
component estimates for ‘days to germination’ in C. verna
with pollen traits of M. guttatus (each trait log-trans-
formed). For germination in C. verna, the estimated
outbred genetic variance is greater than the inbred
genetic variance (VO4VI and COO4CSS) while the
opposite obtains for the Mimulus pollen traits (VGIb

VaþVd). This difference is notable when considering the
genetic basis for ID. If fitness variation is due to
deleterious mutations that are rare and partially reces-
sive, then inbreeding should substantially inflate the
genetic variance (Robertson, 1952; Kelly, 1999; Charles-
worth and Hughes, 2000).
There are several possible explanations for why VO

might be greater than VI for the Collinsia data. First, rare
(partially) recessive alleles may be only one component
of genetic variation, even if they are the primary cause of
ID in the trait. Second, epistasis of a simple scalar kind
can inflate VO relative to VI. If the variance among
genotypes at a particular locus increases with the mean
of the genetic background, VO can exceed VI when the
overall mean of outbred plants is substantially higher
than that of inbred plants (bb0). This is not the most
likely explanation for VO4VI of ‘days to germination’ in
C. verna because the inbred plants have a higher mean
but lower variance than outbred plants.

Comparisons among traits and species
The parameters of quantitative genetic models are
directly comparable across studies. Differences in experi-
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mental design, for example, the type of parents used for
crosses (inbred or outbred), have hindered comparisons
among ID studies. Consider the standard measure of ID
at the population level: d is calculated as 1 minus the
ratio of the mean fitness of inbred individuals to the
mean fitness of outbred individuals. This ratio depends
not only on the genetic architecture of the trait but also
on the difference in f between inbred and outbred
individuals. Outbred progeny have f¼ 0 regardless of the
extent to which parents are inbred, but f of selfed
progeny is contingent on the inbreeding coefficient of
parents. As a consequence, two studies of the same
population will yield different estimates of d when one
uses outbred parents and the other inbred parents.

The IDG program characterizes population-level ID
with b, the rate that fitness declines as a function of the
inbreeding coefficient (Charlesworth and Charlesworth,
1987). With outbred parents, b is twice the difference in
means between selfed and outcrossed progeny. If parents
are fully inbred, b is the simple difference. Variation
among family means (outbred or inbred) is also
contingent on both the experimental design and the
genetic architecture of traits. IDG extracts estimates
for genetic variance components (Va, Vd, Cad, Vdi) that
depend only on the genetic architecture. These compo-
nents are then used to calculate I1 and I2.

The accuracy of estimates for fixed effects (b and M),
variance components (eg, Va and Vdi), and derived
statistics (I1 and I2) depends on the experimental design,
on sample sizes, and on the true values for parameters.
The primary advantage of Design 1 is simplicity. A full
experiment can be concluded in two generations with
parents grown from field collected seed (eg, Kalisz,
1989). The design also provides an elegant means to
estimate population-level ID, as each family provides
‘paired estimates’ of outbred and inbred trait values (the
means from each subfamily in Figure 1a). Accounting for
this pairing increases estimation accuracy when inbred
and outbred means are positively correlated across
families (Johnston and Schoen, 1994).

We distinguish four cases of Design 1 based on the
level of parental inbreeding and the number of sires per
dam. Some guidance regarding the relative accuracy of
estimates for VGI (and thus I1 and I2) from these cases
can be gained by noting the coefficients in Equations (4a–
d). All else equal, the SE for VGI should be roughly
proportional to the coefficients on the RHSs of these
equations. Inspecting Equations (4a–d), it is clear that the
SE for VGI should be smaller with a single sire per dam
than with many. The SE should be much smaller from
experiments using fully inbred parents instead of
outbred parents. This is not surprising given that selfed
progeny of fully inbred parents are essentially inbred
lines and thus provide a direct estimate for VGI.

A potential difficulty with Design 1 is that maternal
effects cannot be distinguished from genetic effects in
determining the resemblance among relatives. The
reciprocal cross of Design 2 and the half-sib comparison
of Design 3 allow the contribution of maternal effects to
be estimated. The greater range of comparisons within
Design 3 allows a more detailed genetic dissection of
variation. In many studies, the large SEs for variance
component estimates may prevent unambiguous conclu-
sions. Such estimates may nonetheless prove valuable in
a comparative context (eg, Husband and Schemske,

1996). A synthesis of results from different studies may
tell us whether I1 and I2 are typically greater for
morphological traits than life-history traits. Are I1 and
I2 related to the mating system of a species? In short, the
various questions typically asked about the magnitude of
population-level ID could also be addressed to other
aspects of genetic variation in fitness.
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Appendix: Algebraic relationships between
observational and causal variance
components

Each comparisons among relatives depicted in Figure 1 is
expressed as functions of genetic variance components in
Table 2 of Cockerham and Weir (1984). We assume that
the parents are either outbred (f¼ 0) or fully inbred
(f¼ 1) and that there are only two alleles at each
polymorphic QTL. Thus, the observational components
(VO, VI, CHS, COO, COS, CSS) can be expressed as a
function of four genetic components (Va, Cad, Vd, and
Vdi) and one or two environmental components (VE and
possibly VM). For Designs 1 and 2, causal component
estimates are extracted from estimates of the observa-
tional components using the formulas given below.

Design 1
For Case 1 in which parents are outbred and there is a
single sire per dam:

VE ¼ ð�7COO þ 8COS � 4CSS þ VI þ 2VOÞ=3

Va ¼ ð5COO þ 8COS � 4CSS þ VI � VOÞ=3

Vd ¼ 2 ðCOO � 8COS þ 4CSS � VI þ VOÞ=3

Cad ¼ �2 ð5COO þ 2COS � 4CSS þ VI � VOÞ=3

Vdi ¼ 4 ð3COO � 2CSS þ VI � VOÞ
and

VGI ¼ 2ðCOO þ VI � VOÞ
For Case 2 where parents are outbred and there are many
sires per dam:

VE ¼ ð�28COO þ 32COS � 16CSS þ 4VI þ VOÞ=5

Va ¼ 4COO

Vd ¼ 4 ð2COO � 8COS þ 4CSS � VI þ VOÞ=5

Cad ¼ �4 ð2COO � COSÞ

Vdi ¼ 8 ð18COO � 12COS þ CSS þ VI � VOÞ=5
and

VGI ¼ 8 ð3COO � 2COS þ CSS þ VI � VOÞ=5
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For Case 3 with fully inbred parents and a single sire
per dam, it is not possible to distinguish genetic variance
components, but

VGI ¼ ðCOO þ 3CSS þ VI � VOÞ=4

Finally, when parents are fully inbred and there are many
sires per dam (Case 4):

VE ¼ VI � CSS

Va ¼ 2COO

Vd ¼ �2COO þ CSS � VI þ VO

Cad ¼ �2COO þ COS

Vdi ¼ 4COO � 4COS þ CSS

and

VGI ¼ CSS

Essentially the same comparisons among relatives are
contained within Design 2. However, the reciprocal
crossing of parents allows VM to be estimated. Also,
because there is a single sire per dam, only cases 1 and 3
from above apply here. When there is no replication
within sub-families and parents are outbred (eg, Willis,
1993), we cannot estimate VGI (or I1 and I2). If parents are
fully inbred however,

VE ¼ VO � COO � VM

and

VGI ¼ COO þ VI � VO
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