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Analysis of quantitative trait loci (QTL) affecting complex
traits is often pursued in single-cross experiments. For most
purposes, including breeding, some assessment is desired of
the generalizability of the QTL findings and of the overall
genetic architecture of the trait. Single-cross experiments
provide a poor basis for these purposes, as comparison
across experiments is hampered by segregation of different
allelic combinations among different parents and by context-
dependent effects of QTL. To overcome this problem, we
combined the benefits of QTL analysis (to identify genomic
regions affecting trait variation) and classic diallel analysis (to
obtain insight into the general inheritance of the trait) by
analyzing multiple mapping families that are connected via
shared parents. We first provide a theoretical derivation of
main (general combining ability (GCA)) and interaction
(specific combining ability (SCA)) effects on F2 family means
relative to variance components in a randomly mating

reference population. Then, using computer simulations to
generate F2 families derived from 10 inbred parents in
different partial-diallel designs, we show that QTL can be
detected and that the residual among-family variance can be
analyzed. Standard diallel analysis methods are applied in
order to reveal the presence and mode of action (in terms of
GCA and SCA) of undetected polygenes. Given a fixed
experiment size (total number of individuals), we demon-
strate that QTL detection and estimation of the genetic
architecture of polygenic effects are competing goals, which
should be explicitly accounted for in the experimental design.
Our approach provides a general strategy for exploring the
genetic architecture, as well as the QTL underlying variation
in quantitative traits.
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Introduction

Analysis of quantitative trait loci (QTL) has progressed
substantially from the early days of single marker
analysis. Methodology now ranges from regression-
based (multiple) interval mapping to likelihood-based
full Bayesian approaches (eg Haley and Knott, 1992;
Jansen, 1993; Jansen and Stam, 1994; Zeng, 1994;
Satagopan et al, 1996; Kao et al, 1999; Carlborg et al,
2000; Corander and Sillanpää, 2002; Jansen et al, 2003). In
addition to normally distributed traits, approaches have
been developed specifically for binary traits (Yi and Xu,
2000; McIntyre et al, 2001; Yi and Xu, 2002b; Coffman
et al, 2005) and for ordinal and categorical traits (Rao and
Li, 2000; Yi et al, 2004). Upon detecting QTL in a single
experiment, a key issue of interest is the generalizability
of the findings. Many authors have compared results for
different mapping populations based upon relative QTL
position (Welz and Geiger, 2000; Kolb et al, 2001;
Kamoshita et al, 2002; Simko, 2002; Clancy et al, 2003;
Flint-Garcia et al, 2003; Toojinda et al, 2003; Tuberosa et al,
2003; Chardon et al, 2004). These comparisons have led to

approaches in meta-analysis for QTL results (Goffinet
and Gerber, 2000; Khatkar et al, 2004), and bioinformatic
tools are being developed to facilitate this effort (Arcade
et al, 2004; Sawkins et al, 2004). Findings often indicate
concordance of intervals for some QTL, but typically a
considerable proportion of family-specific QTL appear to
be identified.

Comparing QTL findings from different families fails
to account explicitly for segregation of different allelic
combinations among different parents and the context
dependency of QTL effects. These deficiencies immedi-
ately lead to questions about the generalizability of QTL
findings from experimental populations to breeding
populations. Previous quantitative genetic studies,
focusing on the general (GCA) and specific combining
abilities (SCA) of parents for a particular complex trait
(Griffing, 1956), were popular precisely because they
allowed an estimation of the genetic architecture of the
phenotype, with inference extending back to the refer-
ence population. This provided an understanding of the
utility of selection programs for the trait of interest
(Hallauer and Miranda, 1988).

Modern breeding therefore faces this problem: efficient
marker-assisted selection requires knowledge of the
value of a QTL in the context of the (population-wide)
genetic architecture of the trait, but traditional
QTL study designs do not generate this knowledge.
Classic quantitative genetic studies provide insight into
the general behavior of a trait, but do not identify
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specific genomic regions which can be selected and
introgressed.

The benefits of both approaches can be combined by
analyzing multiple recombinant families in a mating
design with shared parents. Gilbert (1985a, b) pioneered
this approach, partitioning single-gene effects from
overall genomic (polygenic) effects in diallel crosses.
We propose that using populations (eg F2 or RIL)
developed from a common group of parents and
constructed using classic mating designs to jointly infer
the combining abilities and QTL location is a synergistic
combination of tools available to the modern breeder.

Important progress along this road has been made in
theoretical studies on QTL detection methods in inter-
connected families, exploring segregation probabilities
among more complex crosses (Xu, 1996), the efficiency of
different statistical methods for QTL detection (Rebaı̈ and
Goffinet, 1993; Liu and Zeng, 2000; Rebaı̈ and Goffinet,
2000; Yi and Xu, 2002a; Jannink and Wu, 2003); the number
of parents in the mating design (Muranty, 1996), and the
trade-off between the number of families and family size
(Xie et al, 1998; Xu, 1998; Wu and Jannink, 2004). These
studies have shown that using populations with shared
parents leads to more generalizable inferences about QTL,
and can lead to increased QTL detection power. In
addition to these theoretical efforts, large populations of
RILs with shared parental lines are being constructed (eg
the NSF-funded project ‘Molecular and Functional Diver-
sity in the Maize Genome’, NSF DBI 0321467).

Prior studies indicate that to produce generalizable
results on the genetic architecture of complex traits
several parents are needed (see, for instance Wu and
Jannink, 2004). In this paper, we address the question of
how best to develop RIL populations in an intercon-
nected design with a given number of parents. The
classic diallel design, where every parent is mated with
every other parent, is extremely labor intensive. In
combining ability analysis, it has long been established
that partial-diallel designs (eg NC design II, factorial
(FCT) designs, or circulant designs) may be preferable, as
they are less labor intensive and can still result in
considerable power (Kempthorne and Curnow, 1961;
Dhillon and Singh, 1978).

In this study, we investigate the efficiency of several
partial-diallel mating designs for the joint analysis of
QTL and combining abilities. To relate QTL results
obtained in a diallel of F2 families back to variance
components of a randomly mating reference population,
we first provide a theoretical derivation of the among-
and between-family variances for F2 families, and F2

extensions of the GCA and SCA variance components.
We then use simulation techniques to determine the
trade-offs between the number of crosses and the
number of individuals examined within each cross under
several different patterns of inheritance. We explore how
different designs affect QTL detection power, and power
for inferences about the underlying genetic architecture
of the trait.

Methods

Simulations
We simulated diploid F2 progeny derived from mating
F1 hybrids between 10 inbred parents in a half-diallel

mating design without selfs. Note that, as is common
practice, we refer here to inbred ‘parents’ when
the inbreds are in fact the grandparents of the F2

progeny evaluated. Inbred parents were assumed to
derive from a randomly mated reference population.
This design yielded 45 F2 families. At each locus the
10 parents all carried a distinct allele, resulting
in 55 recognizable diploid genotypes per locus across
the set of 45 F2 families (10 homozygous and 45
heterozygous genotypes). Each F2 family consisted of
500 individuals, and we performed 1000 replicate
simulations.

We used an infinite alleles model for the reference
population such that all QTL alleles and all marker
alleles were different for each parent. This model has
the advantage of simplicity and agrees well with
standard quantitative genetic variance component mod-
els. QTL effects were simulated by specifying the
additive, dominance, and additive-by-additive epistatic
variance contributions of each locus (or pair of loci in the
case of epistasis) to the total phenotypic trait variance.
Genetic variances were specified with reference
to a randomly mating population from which the inbred
founding parents were assumed to have been extracted.
In all simulations, genetic variances in the reference
population contributed a total of 30% of phenotypic
variance, leaving a residual error variance of 70%.
Genetic effects were simulated as follows. For
each QTL, 10 additive effects were sampled from a
standard normal distribution. Each effect, denoted ai,
with i¼ 1, y, 10, corresponded to the allele carried by
one of the founding inbred parents. The effects were
standardized to have zero mean and a variance equal to
half that specified for the QTL. Thus, in a randomly-
mating population, a QTL with those alleles at equal
frequencies would have generated the specified additive
variance. Note that this simulation approach deviates
from what would happen in a repeated sampling of an
infinite alleles population. QTL variance in our simula-
tion was constant from one simulation run to the next
and always equaled the specified variance. In a repeated
sampling of reference population, the sampled QTL
variance would change from one run to the next. Our
approach simplifies the interpretation of the results
because of the constant QTL variance it provided. For
dominance, 55 effects, denoted dij with i, j¼ 1, y, 10 and
dij¼ dji, were sampled from a standard normal distribu-
tion. Each effect corresponded to the difference between
the value conferred by a given diploid genotype and the
value predicted by the additive effects of the genotype’s
two alleles. These effects were standardized so thatP

i dij ¼ 0 for any j,
P

j dij ¼ 0 for any i, and the variance
of the dij was equal to that specified for the QTL. A
consequence of this sampling scheme is that the variance
of the dii, called the variance of homozygous dominance
deviations (Edwards and Lamkey, 2002), is expected to
be equal to the variance of the dij as a whole. In addition,
the covariance between additive effects and homozygous
dominance deviations is expected to be zero. While
neither of these assumptions may hold in vivo (Edwards
and Lamkey, 2002), they provide a useful starting point
for exploring the question at hand. For additive-by-
additive epistasis, 100 effects, denoted aaij with i, j¼ 1,
y, 10, were sampled from a standard normal distribu-
tion. These effects were standardized so that

P
i aaij ¼ 0
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for any j,
P

j aaij ¼ 0 for any i, and the variance of the aaij
was equal to one-fourth of that specified for the QTL
pair. Each effect was associated with the two-locus
haplotype receiving allele i at the first QTL of the pair
and allele j at the second QTL. The effect corresponded to
the difference between the value conferred by the
haplotype and the value conferred by the additive effects
of the haplotype’s two alleles. The variance was again set
so that the specified additive-by-additive epistasis would
be generated by the QTL pair in a randomly mating
reference population. Having sampled the genetic
effects, the genotypic value of each progeny was
generated by first simulating the progeny’s QTL geno-
type, and then summing the genetic effects associated
with that genotype.

Simulated genomes consisted of eight unlinked QTL.
Two additive-effect QTL were adjacent to marker loci
and each contributed 7.5% of the phenotypic variation.
Marker loci were at the QTL position itself (M2, M5),
flanking the QTL at 5 cM (M1, M4) and at 10 cM (M3,M6)
according to the map M1M2M3 on one linkage group and
M4M5M6 on another. Markers were multiallelic and
informative in all crosses. The six remaining QTL
together contributed 15% of the phenotypic variance
and introduced unmarked or polygenic variation in trait
values. We explored three different partitions of the
polygenic variance into its additive, dominance and
epistatic components: only additive variance (15%: 0%:
0% for additive, dominance, and epistatic, respectively);
only dominance and epistatic (0%: 6%: 9%); and additive
plus dominance plus epistatic variance (6%: 6%: 3%). In
all cases, additive and dominance variances were
partitioned evenly across the six polygenes, and the
epistatic variance was partitioned evenly across three
pairs of polygenes. One additional linkage group with
three linked markers (M7M8M9) without QTL was also
simulated.

We examined all 45 F2 families in our analysis of the
half-diallel design. We compared this design to three
other partial-diallel designs: the single-round robin
(SRR), double-round robin (DRR), and FCT (Figure 1).
The SRR, DRR, and FCT designs were constructed by
subsetting the half diallel. This ensured that the
comparisons across designs were made on the same
data. Each design was analyzed over a range of family
sizes (10, 25, 50, 100, 200, or 500 individuals per F2 family
included in the analysis). The total size of a given
experiment is the product of the number of families by
the number of individuals analyzed per family.

QTL detection and analysis of combining abilities
We discuss the following ANOVA models for detection
of marked QTL:

Yfmk ¼ mþMm þ efmk ð1Þ

Yfmk ¼ mþ ff þMmðfÞ þ efmk ð2Þ
where Y is the phenotype for the quantitative trait of
interest, m is the overall mean, M is the effect of marker m
nested within family f in Model 2, and f is the effect of
family f (f¼ 1, y, n1), where n1 is the number of families
(10, 20, 25, 45).

The. family effect can be partitioned into an additive
component that is attributed to parental main effects and a
nonadditive component that is attributed to parental
interactions. These are F2 extensions of the GCA and SCA
variance components, which are traditionally defined
with respect to the F1 progeny (Sprague and Tatum, 1942):

Yijk ¼ mþ Gi þ Gj þ Sij þ eijk ð3Þ

where Gi and Gj are the GCA effects of the parents i and j
and S is the effect of the parental combination (Griffing,
1956; Lynch and Walsh, 1998). Sums of squares associated
with the GCA effect were obtained by including binary
indicator variables in the design matrix that coded the
involvement of each parent in the cross (see Johnson and
King, 1998). Following a hierarchical decomposition of
variance inherent to diallel designs, we used type I,
sequential, analyses to first obtain the sums of squares
associated with GCA and then those associated with SCA
(after accounting for GCA). Significance tests were carried
out according to standard diallel theory: GCA mean
squares were tested over SCA mean squares, and SCA
mean squares were tested over the model error mean
squares (Lynch and Walsh, 1998). All tests were conducted
at a nominal significance level of a¼ 0.05. Note that Model
3 cannot be fit for the SRR as GCA and SCA effects are
only separately estimable when the number of families
generated exceeds the number of parents used in the
mating design. Therefore, only Model 2 was fit for the
SRR data.

After Model 2 has lead to the detection of QTL (M2 and
M5), it can be reordered to test for residual genetic effects
not associated with the marked QTL. We refer to loci
generating such residual effects as polygenes (Mather,
1941). Their presence is examined using Model 4:

Yfk ¼ mþM2 þM5 þ ff þ efk ð4Þ

Figure 1 Different partial-diallel designs considered in our simulations. Shaded cells indicate crosses that are included in the analysis. (a)
Half diallel; (b) SRR; (c) DRR; (d) FCT.
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where M2 and M5 are the markers at the identified QTL
positions. As with Model 1, marker effects are fitted
before family structure is taken into account. The effects
of the two marked QTL are first removed (type I sums of
squares) and the family effects (f) estimated are residual
effects, leading to a test of the null hypothesis that no
undetected polygenetic effect is present. A rejection of
this null hypothesis indicates the presence of unmarked
polygenic effects. As in Model 3, the family effect can be
partitioned into its GCA and SCA components:

Yijmk ¼ mþM2 þM5 þ Gi þ Gj þ Sij þ eijmk ð5Þ
which splits the residual family effect into a GCA effect
due to parental main effects and an SCA effect due to
parental interactions. If the effects considered in the
models were orthogonal, then the order of the model
would be irrelevant, and Model 4 would give identical
answers to Model 2. However, the lack of orthogonality
in these models makes the consideration of both Model 2
and Model 4 relevant. Note that all the models
considered here do not include epistatic terms. A more
general approach would be to account for the interac-
tions among loci, as well as their main effects. In the case
where the mode of action of the QTL is unknown,
models that include epistatic terms are to be preferred.
As our simulations only included additive QTL, for
demonstration purposes, we did not include these terms
in our models.

When parental effects are considered random, the
GCA and SCA components of variance can also be
estimated. As a demonstration, for a single case (half-
diallel design, polygenes contributing only dominance
and epistatic variance, 500 individuals per F2 family) we
estimated the variance components by fitting a family
effects model, Yfmk¼ mþffþ efmk, and Model 3 using
REML (Searle et al, 1992; Zhu and Weir, 1996). The
estimated variances were compared to the expected
variances of GCA and SCA effects according to the
theoretical decomposition of among-F2 family variance.
While different approaches have been developed for the
analysis of diallel designs (Hayman, 1954a, b; Griffing,
1956; Gardner and Eberhart, 1966), partial diallels
(Kempthorne and Curnow, 1961; eg Fyfe and Gilbert,
1963; Viana et al, 1999) and extensions of analysis to F2

generations (Jinks, 1956; Hill et al, 2001), for the purposes
of demonstration we follow the approach of Cockerham
(1983) to obtain covariances among relatives derived by
self-fertilization. All models were fit and tested in SAS
(SAS Institute Cary, NC, USA).

Results

Decomposition of among-F2 family variance
The following decomposition applies to among-F2 family
variances in the absence of QTL analysis, as well as to
among-family variances that are residual once QTL main
effects have been removed. Cockerham (1983) gave
formulas for obtaining covariances between relatives
derived from self-fertilization caused by single-locus
effects. The relevance of these results to our context
stems from the following reasoning. Assume a randomly
mating reference population from which inbreds are
extracted, then crossed in some form of diallel. The
resulting F1 progeny genotypes occur in the diallel in

equal frequencies as they would in the reference
population. The F1 are subsequently self-fertilized to
obtain F2 progeny. Cockerham’s (1983) results provide
the relevant single-locus total among-progeny variance
components and among-family variance components.
We present these results first, then extend them to two-
loci additive-by-additive epistasis.

Denoting the progeny inbreeding coefficient Fg, the
total among-progeny variance is

VT ¼ð1 þ FgÞVA þ ð1 � FgÞVD

þ 4FgD1 þ FgD2 þ Fgð1 � FgÞH�

¼ 3
2VA þ 1

2VD þ 2D1 þ 1
2D2 þ 1

4H
�

The among-family variance is

VB ¼VA þ ð1 � FgÞ2VD þ 2FgD1 þ 1
2F

2
gD2 þ 0H�

¼VA þ 1
4VD þD1 þ 1

8D2

By subtraction, we can obtain the within-family
variance as

VW ¼ 1
2VA þ Fgð1 � FgÞVD þ 2FgD1

þ Fgð1 � 1
2FgÞD2 þ Fgð1 � FgÞH�

¼ 1
2VA þ 1

4VD þD1 þ 3
8D2 þ 1

4H
�

To extend these results for covariances caused by
two-loci additive-by-additive effects, define y2

tgg 0 as the
probability that, for both of two unlinked loci, a random
allele from g is IBD to a random allele from g0, where g
and g0 are the products of self-fertilizing their common
ancestor that was itself the product of t generations of
self-fertilization. The resemblance between g and g0 due
to additive-by-additive epistasis is 4y2

tgg 0VAA. Three cases
can be distinguished. First, with probability (1–Ft)2, the
common ancestor was not inbred at either locus. In that
case, the probability of IBD between random alleles from
g and g0 is 1

2 at each locus, and since the loci are unlinked,
they segregate independently and y2

tgg 0 ¼ 1
4. Second, with

probability Ft(1–Ft), the common ancestor is inbred at
one locus, but not the other. In that case y2

tgg 0 ¼ 1
2. Finally,

with probability F2
t, the common ancestor is inbred at

both loci, in which case y2
tgg 0 ¼ 1. Summing these

conditional probabilities gives the unconditional prob-
ability y2

tgg 0 ¼ 1
4ð1 þ FtÞ2. Thus, for independent loci, y2

tgg 0

is the square of the ytgg 0 coefficient defined by Cockerham
(1983). In our context, setting t to zero and one provides
the coefficients for among-family and total among-
progeny variance, respectively. Adding these terms to
the results above gives

VT ¼ 3
2VA þ 1

2VD þ 2D1 þ 1
2D2 þ 1

4H
� þ 9

4VAA

VB ¼VA þ 1
4VD þD1 þ 1

8D2 þ VAA

VW ¼ 1
2VA þ 1

4VD þD1 þ 3
8D2 þ 1

4H
� þ 5

4VAA

The among-family variance can be partitioned further
into components caused by GCA and SCA. The
necessary coefficients of identity to deduce the GCA
component follow. Denote by g and g0 progeny derived
from the inbred line crosses A�B and A�C, respec-
tively, after g generations of selfing. The lines g and g0

share one common inbred ancestor, and their covariance
will therefore provide the GCA variance. Denote by Fg,
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Fg 0 , ygg 0 , g€gg 0 , Dg	g 0 , dgg 0 , and dgþg 0 the inbreeding
coefficients of g and g0, their coefficients of coancestry,
and their three- and four-gene coefficients of identity for
the relationship defined here, and using a notation
similar to Cockerham (1983). A two-locus coefficient of
coancestry y2

gg 0, similar to the coefficient y2
tgg 0 described

above, will account for additive-by-additive epistatic
contributions to the GCA variance. The inbreeding
coefficient is given by the usual Fg ¼ 1 � ð1

2Þ
g. The

coefficient of coancestry ygg 0 ¼ 1
4, irrespective of the levels

of inbreeding g and g0. For unlinked loci, y2
gg 0 ¼ 1

16. For
g€gg 0 there is a probability of Fg that g is inbred, and if it is
inbred, a probability of 1

4 that a random gene from g0 is
IBD to it. Therefore, g€gg 0 ¼ 1

4Fg. Similarly, gg€g 0 ¼ 1
4Fg 0 .

There is a probability of FgFg 0 that both g and g0 are
inbred at a locus, so Dg	g 0 ¼ FgFg 0 . If both g and g0 are
inbred at a locus, there is a probability of 1

4 that they are
also IBD to each other, so dgg 0 ¼ 1

4FgFg 0 . Finally, dgþg 0 is the
half the probability that neither g nor g0 are inbred and
that two pairs of alleles between g and g0 are IBD. Since g
and g0 have only one common ancestor, this probability is
zero. Specifying these coefficients to the situation of F2

families, we find that the covariance between progeny
with one common inbred ancestor is

VGCA ¼ covðg; g0Þ
¼ 1

2VA þ 0VD þ 1
2ðFg þ Fg 0 ÞD1

þ 1
4FgFg 0D2 þ 0H� þ 1

4VAA

¼ 1
2VA þ 1

2D1 þ 1
16D2 þ 1

4VAA

Since each family has two parents, the among-family
variance consists of twice the GCA variance plus the SCA
variance. The SCA variance is obtained by subtraction:

VSCA ¼VB � 2VGCA

¼ 0VA þ ð1 � FgÞ2VD þ 0D1 þ 0D2 þ 0H� þ 1
2VAA

¼ 1
4VD þ 1

2VAA

Dr Wyman Nyquist independently obtained these
same results (pers. comm.). As with traditional diallel
analyses, GCA variance is largely associated with
additive QTL effects, while only nonadditive genetic
effects contribute to SCA variance, including dominance,
additive-by-additive, and additive-by-dominance effects.
Note that the additive, dominance, and epistatic var-
iances simulated for each QTL were specified with
reference to a randomly-mating population and con-
tribute to GCA and SCA differently when measured in
the F1 versus the F2 generation, due to the generation of
inbreeding resulting from intermating F1 individuals
(Jinks, 1956; Hill et al, 2001).

In our simulations, VA, VD, and VAA are specified.
Given a finite number of inbred parents used in the
diallel, the variance of the inbred dominance deviations,
D2, will depend on the deviations sampled in each
simulation run. In the expectation, however, it will be
equal to VD. As we sample additive and dominance
effects independently, the expectation of D1 is zero.
However, for a specific simulation, D1 may be either
positive or negative due to the specific effects sampled.
Given that the expectation of the average inbred
dominance deviation is zero in our simulations, the
expectation of the squared average, H*, is equal to the

variance of the average. That variance depends on the
number of inbred parents included in the diallel, nPar,
and is VD/nPar. In practice, the variance contributed by
that component will generally be small.

QTL analysis
As expected, a naı̈ve search for marker–trait associations
that failed to take into account the family structure of the
F2 progeny (Model 1) resulted in highly significant
effects of all markers, irrespective of linkage to a QTL
(Figure 2). In the half-diallel design, for example, tests for
differences among the 55 genotypic classes of any marker
on the neutral linkage group (without QTL) yielded a
significant result in at least 94% of the replicate
simulations, even at the lowest family size. When the
family structure was appropriately accounted for (Model
2), the type I error estimated by examining unlinked
markers was found to be consistent with the threshold
set for significance testing (0.05, see Figure 2b). All
further analyses, therefore, follow Model 2.

For a fixed number of individuals per F2 family,
designs with more families have more power to detect
the marked QTL, as the total experiment size increases
with the number of families (Table 1, Figure 3a). In
contrast, when the total experimental size (number of F2

families times the number of individuals per family) was

Figure 2 Marker-trait analysis with and without accounting for the
family structure of the F2 progeny, for analyses including different
numbers of individuals per F2 family. For each of nine markers the
proportion of significant simulations is given (1000 replicated
simulations; a¼ 0.05). QTL were present on groups 1 and 2 (at M2

and M5), but not on group 3. (a) Naı̈ve search that does not take into
account the family grouping of F2 individuals; (b) nested approach,
where marker effects are tested within families. Results are shown
for the half-diallel design, under purely nonadditive polygene
action.
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fixed, the partial-diallel designs with fewer and larger
families (eg single and double round-robin designs)
were more powerful in detecting QTL than designs with
more and smaller families (Figure 3b). For instance,
at a fixed total experimental size of 500 individuals, an
additive QTL that accounted for 7.5% of the phenotypic
variance was picked up in about 80% of the replicated
simulations in the SRR design, as opposed to only about
35% in the half-diallel design. Power was affected
slightly by the mode of action of the polygenes; marked
QTL were more readily detected if polygenes acted
additively (Table 1).

Exploring undetected polygene effects
Power to detect residual polygenic effects was depen-
dent on the number of families as well as the total
experiment size (Figure 4). To obtain high power to
detect these residual effects, large experiment sizes were
needed, containing between 1000 and 2000 progeny.
Neither the mode of action of the polygenes (additive
versus nonadditive) nor the specific partial-diallel design
had a clear effect on the power to detect this effect
(Figure 4). Further, Model 5 correctly identified the mode
of polygene action: (1) a significant GCA effect but no
SCA effect when only additive polygenes were specified;
(2) a significant SCA effect but no GCA effect when only
nonadditive polygenes were specified; and (3) significant
GCA and SCA effects when polygenes contributed
additive as well as nonadditive variance (Figure 4).
Fitting the marker effects did, however, absorb part of
the total genetic variance attributable to polygenic
effects, as illustrated by the fact that SCA was detected
less easily after fitting the marker effects even when the
linked QTL themselves did not contribute any nonaddi-
tive variance (Figure 5).

Among-F2 family variance components
Variance components were estimated in PROC MIXED
using the REML option (SAS Institute, Cary, NC, USA)
by sequentially fitting the model terms. That is, the GCA
is fit first and the residuals from the GCA model are then
used as the dependent variable in the SCA analysis. The
model is fit sequentially because of the structure of the
GCA and SCA terms. Since PROC MIXED estimates type
III variance components, a single model including GCA
and SCA will be problematic because these terms are not

Table 1 QTL analysis: power to detect the two marked QTL at a
fixed number of 10, 25, and 50 individuals per F2 family, in different
partial-diallel designs and with different modes of polygene action

Diallel design
(no. of families)

Polygene action

Additive Nonadditive Both

Family size 10 	 25 	 50 10 	 25 	 50 10 	 25 	 50

Half diallel (45)
QTL 1 0.38 	 0.93 	 1.00 0.32 	 0.88 	 1.00 0.34 	 0.91 	1.00
QTL 2 0.36 	 0.94 	 1.00 0.29 	 0.89 	 1.00 0.31 	 0.91 	1.00

Factorial (25)
QTL 1 0.28 	 0.77 	 0.99 0.23 	 0.69 	 0.99 0.24 	 0.71 	 0.99
QTL 2 0.25 	 0.77 	 0.99 0.22 	 0.69 	 0.98 0.22 	 0.72 	 0.99

Double-round robin (20)
QTL 1 0.24 	 0.69 	 0.97 0.20 	 0.63 	 0.95 0.22 	 0.64 	 0.97
QTL 2 0.23 	 0.67 	 0.97 0.19 	 0.65 	 0.96 0.20 	 0.66 	 0.96

Single-round robin (10)
QTL 1 0.16 	 0.47 	 0.83 0.15 	 0.41 	 0.78 0.16 	 0.45 	 0.82
QTL 2 0.16 	 0.46 	 0.83 0.14 	 0.41 	 0.79 0.16 	 0.43 	 0.80

The proportion of replicated simulations (out of 1000) is given,
in which the marker that was completely linked with the QTL
showed a significant association with the phenotype at the a¼ 0.05
level.

Figure 3 Power of different partial-diallel designs to detect
an additive QTL that contributes 7.5% of the phenotypic variance,
expressed as the proportion of simulations (out of 1000) in which
the completely linked marker showed a significant association
with the phenotype at the a¼ 0.05 level. Each diallel design was
analyzed with 10, 25, 50, 100, and 200 numbers of F2 individuals
per family, yielding different total experimental sizes for the designs
that include different numbers of families. Results are shown for
one of the two specified QTL, under purely nonadditive polygene
action. (a) Comparison of designs at equal numbers of individuals
per family; (b) Comparison of designs at equal total experimental
sizes.
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orthogonal. Estimated variances were concordant with
expectations, but appear to slightly underestimate
their expected values, although the empirical confi-
dence interval does contain the true parameter value
(Table 2).

Discussion

Joint analysis of multiple interconnected families can be
a powerful strategy to extend QTL analysis beyond the
limitations of single crosses (Rebaı̈ and Goffinet, 1993;

Figure 4 Analysis of residual among-family variance after fitting the two detected QTL. Upper panels show the proportion of replicated
simulations (out of 1000) in which the among-family variance was significant at the a¼ 0.05 level, in different diallel designs and for different
total experimental sizes. In the middle and lower panels, the among-family variance is partitioned into its components GCA and SCA.

Figure 5 Proportion of replicated simulations (out of 1000) in which GCA (circles) and SCA (triangles) effects were significant at the a¼ 0.05
level, in different diallel designs and for different total experimental sizes. Dashed lines show results for models that account for effects of the
detected QTL before testing GCA and SCA effects. Solid lines show results for models that do not include detected QTL. Results are shown
for simulations where the polygenes contributed only nonadditive variance; marked QTL contributed only additive variance.
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Muranty, 1996; Rebaı̈ and Goffinet, 2000; Jannink and
Jansen, 2001). We find that, given a fixed number of
parents and total experimental size, some partial-diallel
designs are more efficient than others in detecting QTL.
Strikingly, we find that using the diallel as a basis for
developing interconnected families allows for combining
QTL analysis with traditional analysis of GCA and SCA,
providing insight into the genetic architecture of the trait
and revealing the mode of action of undetected QTL.

QTL detection power in different designs
For markers unlinked to QTL, associations with the
phenotype arise (see Figure 2a) because of linkage
disequilibrium generated by the mating design. Alleles
at unlinked loci will be in linkage equilibrium within
families, but they will be in linkage disequilibrium
across families. If we denote by M1 and Q1 alleles from
a marker and an unlinked QTL carried by an arbitrary
inbred parent P1, linkage equilibrium means that
P(Q1|M1)¼P(Q1). In gametes carrying M1, P(Q1|M1)¼ 1

2.
Within families of P1, P(Q1)¼ 1

2, and linkage equilibrium
holds. Across all families, however, it is generally not
true that P(Q1)¼ 1

2. For example, with 10 parents in the
design and assuming that each parent contributes to an
equal number of families of equal size, P(Q1)¼ 0.1, such
that Q1 and M1 are associated more strongly than
expected under equilibrium, which will generate a
spurious association between marker and phenotype.
To avoid this problem, it is necessary to test for QTL
association by nesting marker effects within families.
This is clearly demonstrated by our findings using Model
1 (Figure 2). Note that, if all genetic variance is accounted
for by marked QTL in a multiple QTL model, no residual
genetic variation will be available to associate with
unlinked markers, and there would be no need to
account for family structure. While this situation is
theoretically possible, it seems unlikely in practice, given
that many small QTL are likely to remain undetected. In
addition, non-nuclear effects and interactions between
nuclear and extra-nuclear effects may also be detected as
a polygene effect in these designs.

Comparing different partial-diallel mating designs
using outbred parents, Muranty (1996) showed that,
when the number of families and the number of

offspring per family are held constant, QTL detection
power is affected by the number of parents used in the
design, but the arrangement of the parents in specific
diallel designs has little impact. Based on this result, we
explored QTL detection power with a fixed number of
parents in order to compare different mating designs
under the assumption that all designs sample the same
genetic variation (10 parents). For a fixed experiment
size, we found that QTL detection power was greatest for
the mating design with the fewest but largest families
(the SRR), while power was lowest for the design with
the most, smallest families (the half diallel). This is in
agreement with previous findings (eg Soller and Genizi,
1978; Wu and Jannink, 2004). In small families, the
stochastic nature of segregation may cause some QTL or
marker genotypes to be represented by very few (or zero)
individuals. For example, for an F2 family size of 10, the
probability that one of the homozygote genotypes is
missing is 10.9%. When family size increases to 20, this
probability drops to 0.6%, but the probability that one of
the homozygote genotypes is represented by only one
individual is still 4.8%. In such situations the family in
question contributes little information about the marker
effect, reducing power of the QTL analysis. As all
our designs involved 10 parents, the minimum number
of families was 10 (in the SRR design). Further reduction
in the number of families, by reducing the number of
parents involved in the crossing design, may further
increase the power to detect QTL segregating in the
pedigree, but may decrease QTL detection efficiency
due to insufficient sampling of QTL alleles of the
base population from which the parents were derived
(Muranty, 1996; Wu and Jannink, 2004).

We focused on detecting additive QTL that each
explained 7.5% of total variance, with sample sizes
ranging from 10 to 500 per F2 family. Power of QTL
detection was considerable even with small family sizes,
due to the ability to borrow power across families and
due to the relatively simple QTL effects that we
simulated. For exact localization of QTL (as opposed to
detection) the effects of small family size may be different,
as the power that can be borrowed across families will
depend on the degree that recombination probabilities
between markers are similar between the families. Also,
with more complex (eg epistatic) QTL models more
segregants per family will need to be examined. We
also use a very straightforward single-marker analysis
for QTL detection; however, the approach described is
general and can be used in combination with any QTL
detection procedure. The important point is to account
for the family structure in the testing procedure.

Another simplification of our analysis is that we
assumed an infinite alleles model such that for both
markers and QTL all parents were assumed to carry
unique alleles. Clearly, having completely informative
markers will increase QTL detection power relative to
the more realistic case in which markers will not be
informative in all families. The use of multiple linked
markers in a region, denser marker maps and interval
mapping approaches can mitigate this problem. Also,
realistically, individual QTL may not segregate in all
families as in the simulations. In the simulations, though
the two parents of a family will always carry distinct
QTL alleles, the difference in their allelic effects may be
small, mimicking a nonsegregating situation. The overall

Table 2 Expected and observed variance components in the F2

generation

Component Expected Average (SD)

General Simulated case

Vbetween families VA þ 3
8VD þ VAA ¼ 26.25 22.04 (6.47)

VGCA
1
2VA þ 1

16VD þ 1
4VAA ¼ 10.13 9.52 (6.92)

VSCA
1
4VD þ 1

2VAA ¼ 6.00 5.87 (1.38)

Expectations are based on QTL variances specified with respect to a
randomly mating base population, and assume random pairing of
F1 individuals to generate F2 families. The table shows the case
where marked QTL contribute additive variance and polygenes
contribute only dominance and additive-by-additive variance
(VA¼ 15; VD¼ 6; VAA¼ 9). Estimated values are from the half-
diallel design with 500 individuals per F2 family, and are averaged
over 1000 replicated simulations. The standard deviation over
replicated simulations is also given.
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variance of allelic effects will have a much greater
influence on QTL detection power than whether that
variance is composed of an ‘infinite’ allelic series or of a
discrete set of few alleles.

We noted a modest but consistent effect of the
polygenes’ mode of action on QTL detection power:
power was lower when polygenes contributed nonaddi-
tive variance (Table 1). This is caused by the differential
contribution of VA, VD, and VAA to within-F2 family
variance: 15% nonadditive variance, specified with refer-
ence to a randomly-mating base population, contributes
more variance within F2 families than 15% additive
variance does (see Decomposition of F2 family variance).
In the QTL detection models, polygenic variance con-
tributes to the error variance, making the QTL more
readily detectable when polygenes act additively.

Detecting polygenic effects
Having detected QTL and statistically controlled for their
effects, the remaining genetic variation was explored
using traditional quantitative genetic approaches to
assess the modes of gene action of undetected QTL. A
first step in this process involves determining whether
there is residual variation unaccounted for by the
marked QTL, as indicated by a significant family effect
in Model 4. An important result of our simulations is that
the detection of this effect does not depend on the mode
of action of the unmarked polygenes (Figure 4). Having
detected residual (polygenic) variance, it becomes mean-
ingful to determine the mode of gene action generating
the variance by partitioning it into components attribu-
table to GCA and SCA effects. Knowing the predominant
mode of polygene action will give insight into the
feasibility of identifying their map locations through
further experimentation. In particular, additive-effect loci
will be more easily identifiable than polygenic loci that
generate purely dominant or epistatic variances.

Of note, when marker effects are fit before family
effects, as is necessary to make inferences on residual
polygenic effects, a portion of the polygenic variance is
absorbed in the marker classes due to mating-design-
wide linkage disequilibrium between polygenes and
markers (see Discussion above). This affects the analysis
of polygenic effects (see Figure 5). Even so, in the simple
regression-based approach proposed here, polygene
action is still detectable and can even be partitioned into
additive and nonadditive components. For the half-
diallel, DRR, and FCT designs, we tested whether the
polygenic effect was predominantly additive (partitioned
to GCA) or predominantly dominant or epistatic (parti-
tioned to SCA). Not surprisingly, we find that designs in
which each parent contributes to more families (more
connected designs) are more efficient in the GCA/SCA
analysis of this polygenic variance than less connected
designs (Kempthorne and Curnow, 1961).

For a fixed experiment size, more connected designs
have fewer individuals per family than less connected
designs. As a result, the power for detection of the QTL is
lower. The potential gain of insight that more connected
designs provide into the mode of action of polygenes
must be balanced against the need for an adequate
number of segregants per family for QTL detection
power. If the primary goal of the study is to detect the
relevant QTL, our results suggest that a SRR design is a

good initial choice – although subsequent experiments
using more connected designs would be required to
obtain a comprehensive understanding of the QTL and
polygene effects. If, in contrast, the main goal is to
understand the inheritance of the trait with an initial
estimate of QTL location, one of the more connected
designs will be a better choice.

Variance component estimations
Given specification of VA, VD, and VAA of the QTL and
polygenes in our simulations, we derived theoretical
expectations for the GCA and SCA variances in the F2.
The empirically observed variances appeared to deviate
from these expectations; in particular, among-family
variance was slightly lower than predicted (Table 2).
Since marker effects were not included in the models
estimating variance components in Table 2, absorption of
family effects by markers does not explain this under-
estimation. The theoretical expectations were derived
assuming random mating, but the partial-diallel mating
designs are not random insofar as selfing is not allowed.
The exclusion of selfing means that parents were paired
using sampling without replacement, which generates a
negative covariance between the effects of parents of a
family. This negative covariance would be expected to
depress the among-family variance. Support for this
hypothesis comes from the fact that GCA variance
showed a smaller deviation from expectation than overall
family variance. That is, predicted family variance from
the GCA/SCA analysis is 2� 9.52þ 5.87¼ 24.91, which is
greater than the directly estimated family variance of
22.04 (Table 2). Each parent’s GCA effect is estimated
while controlling for the GCA of its mates, which, to a
large extent, eliminates any negative covariance.

Conclusion

We demonstrate that by taking a classical quantitative
genetic approach to mapping we can both locate specific
genomic regions associated with a phenotype, and
dissect the genetic architecture of the trait. Having
multiple populations in the study ensures that QTL
findings are more generalizable than findings from
single-cross experiments. By combining diallel mating
designs with QTL mapping, the identification of specific
loci responsible for trait variation and the assessment of
the generalizability of the findings will allow breeders
to decide how to focus their efforts. In addition, the
quantitative assessment of the amount and type of
unexplained genetic variation in the reference popula-
tion can serve as a guide to further experimentation.

As multiple mapping populations are expensive to
generate, co-ordinated efforts to create suitable popula-
tions will be crucial. We show here that efforts to create
populations in a design that is suited to GCA and SCA
estimation (or to augment the existing designs to such an
interconnected design) can greatly increase the value of
the mapping resource and therefore should be strongly
encouraged.
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