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Although epistasis is an important phenomenon in the
genetics and evolution of complex traits, epistatic effects are
hard to estimate. The main problem is due to the over-
parameterized epistatic genetic models. An epistatic genetic
model should include potential pair-wise interaction effects of
all loci. However, the model is saturated quickly as the number
of loci increases. Therefore, a variable selection technique is
usually considered to exclude those interactions with negli-
gible effects. With such techniques, we may run a high risk of
missing some important interaction effects by not fully
exploring the extremely large parameter space of models.
We develop a penalized maximum likelihood method. The

method developed here adopts a penalty that depends on the
values of the parameters. The penalized likelihood method
allows spurious QTL effects to be shrunk towards zero, while
QTL with large effects are estimated with virtually no
shrinkage. A simulation study shows that the new method
can handle a model with a number of effects 15 times larger
than the sample size. Simulation studies also show that
results of the penalized likelihood method are comparable to
the Bayesian shrinkage analysis, but the computational speed
of the penalized method is orders of magnitude faster.
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Introduction

Epistasis plays a fundamental role in the genetic control
and evolution of complex traits. However, epistatic
effects are hard to detect (Cheverud and Routman,
1995) because an epistatic genetic model potentially
contains a large number of model effects. One choice is to
use a model selection technique to eliminate the spurious
effects so that the number of effects is reduced to a
manageable level. Several model selection methods have
been developed recently. A maximum likelihood (ML)
based stepwise regression method has been developed
by Kao et al (1999) for model selection. A one-dimen-
sional search method, also based on ML, was developed
by Jannink and Jansen (2001) and Boer et al (2002). More
recently, a Bayesian method based on the stochastic
search variable selection (SSVS) has been applied to QTL
mapping (Oh et al, 2003; Yi et al, 2003). These various
selection methods are still open to discussion because the
criteria of variable inclusion and exclusion are somewhat
subjective (Balding et al, 2002; Broman and Speed, 2002;
Sillanpaa and Corander, 2002; Kadane and Lazar, 2004).

Ridge regression represents another class of methods
for handling oversaturated models. Whittaker et al (2000)
adopted the original ridge regression idea of Hoerl and
Kennard (1970) to shrink marker effects proportionally in
the context of marker-assisted selection. Gianola et al
(2003) claimed that the mixed model analysis of genetic

effects is the same as the ridge regression analysis, except
that the ridge factors vary across model effects and can
be estimated from the data. Xu (2003) found that ridge
regression works only if the number of model effects is in
the same order as the number of observations. Xu (2003)
modified the ridge regression by allowing the ridge
factor to vary across different model effects. The
difference between Xu (2003) and Gianola et al (2003) is
that Xu’s (2003) method can estimate the QTL variance
using only a single regression coefficient whereas the
method of Gianola et al (2003) estimates the QTL
variance using a batch of regression coefficients. The
modified ridge regression methods turn out to be
equivalent to the Bayesian analysis with different model
effects taking different prior distributions. The model-
selection-free method of Xu (2003) has successfully
detected multiple QTL with main effects. Extension of
the method to an epistatic effects model has not been
explored, although it is straightforward. One concern
about the extension is the intensive computing time
because the Markov Chain Monte Carlo (MCMC)
algorithm requires repeatedly sampling a huge number
of model effects. If we incorporate the idea of estimating
the parameters of the prior distribution from the data, a
kind of empirical Bayesian analysis, the method becomes
a penalized ML method (Boer et al, 2002).

In this study, we develop such a penalized likelihood
method, with the penalty being a function of the
parameters. The method can handle an oversaturated
model, with the number of model effects many times
larger than the number of observations. The method
allows spurious effects to be shrunk towards zero, while
QTL with large effects is subject to virtually no
shrinkage. Therefore, model selection is no longer
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needed, and all problems associated with model selec-
tion, for example, lack of full exploration of the
parameter space of models and intensive computing
time, are not of concern.

We use the backcross (BC) design as an example to
demonstrate the new method. We also fix the QTL
positions at markers so that estimation of QTL positions
is irrelevant and we can concentrate on evaluating the
performance of the method based on the estimated
effects. The method is essentially the multiple marker
analysis of Xu (2003) incorporating epistatic effects from
the ML perspective.

Theory and methods

Epistatic effect model
Let yi (i¼ 1,y,n) be the phenotypic value of the ith
individual in a BC mapping population of size n. The
epistatic effect model is

yi ¼ a0 þ
Xp
j¼1

zijaj þ
Xp
ros

zirzisars þ ei ð1Þ

where a0 is the population mean, Zij is a dummy variable
indicating the genotype of the jth marker for individual i,
aj is the effect of marker j (j¼ 1,y, p), p is the total
number of markers on the entire genome, ars is the
epistatic effect between markers r and s (r¼ 1,y, p–1;
s¼ rþ 1,y, p), and ej is the residual error with a N(0, s2)
distribution. In a BC population, an individual can take
one of two genotypes, heterozygote and homozygote.
The dummy variable is defined as Zij¼ 1 for hetero-
zygote and Zij¼�1 for homozygote.

Methods of estimating the main effects and interaction
effects are the same. For the sake of clarity of notation,
we redefine the design matrix and the regression
coefficients as follows. Let b0¼ a0, bj¼ aj (j¼ 1,y, p), and

bjþp ¼ars ðr ¼ 1; . . . ; p� 1; s ¼ rþ 1; . . . ; p;

j ¼ 1; . . . ; q� pÞ;
where q¼ p(pþ 1)/2. Similarly, we define xij¼ zij
(j¼ 1,y, p) and

xiðjþpÞ ¼zirzis ðr ¼ 1; . . . ; p� 1; s ¼ rþ 1; . . . ; p;

j ¼ 1; . . . ; q� pÞ
Model (1) is now rewritten as

yi ¼ b0 þ
Xq
j¼1

xijbj þ ei ð2Þ

We now have a simple model that includes both the
main and the interaction effects.

Penalized likelihood function
The penalized likelihood is similar to the posterior
distribution of the parameters, with the prior distribution
of the parameters serving as the penalty. The difference
between the penalized likelihood method and the
Bayesian method is that the parameters in the prior
distributions are estimated simultaneously along with
the parameters of interest. Let y¼ {b0, b1,y, bq, s2} be the
vector of parameters of interest. The log likelihood

function is

LðyÞ ¼
Xn
i¼1

logfðyi; bi; s2Þ ð3Þ

where bi ¼ b0 þ
Pq

j¼1 xijbj and fðyi; bi; s2Þ is the normal
density with mean bi and variance s2.
We now introduce a factor to penalize the large

number of model effects. This penalty should be a
function of the parameters. The prior density of the
parameters in the Bayesian framework is an ideal
choice for the penalty factor. Let us introduce the
following prior density for each of the parameters.
Parameters b0 and s2 are always included in the model
and thus their inclusion should not be penalized. We
introduce a normal prior for each of the regression
coefficients,

pðbjÞ ¼ fðbj; mj; s2j Þ for j ¼ 1; . . . ; q ð4Þ

In classical Bayesian regression analysis, mj and s2j
are hyperparameters. In the oversaturated model,
however, the choice of the parameters in the prior
distribution is very important. Therefore, we will
estimate these hyperparameters from the data. Our
experience shows that a prior distribution should also
be assigned to mj and the normal prior given below is
necessary

pðmjÞ ¼ fðmj; 0; s2j =ZÞ for j ¼ 1; :; q ð5Þ
where Z40 serves as a prior sample size for accessing mj.
Let x ¼ fm1; . . . ; mq; s21; . . . ; s2qg be the hyperparameters
that are subject to estimation. The logarithm of the prior
density is used as the penalty and it has the following
form;

Pðy; xÞ ¼ log pðy; xÞ

¼
Xq
j¼1

logfðbj; mj; s2j Þ þ logfðmj; 0; s2j =ZÞ
h i

ð6Þ

The penalized log likelihood is defined as

cðy; xÞ ¼ LðyÞ þ Pðy; xÞ ð7Þ

Parameter estimation
The parameters are estimated by maximizing c(y, x) with
respect to y and x simultaneously. The solutions are
called the penalized maximum likelihood estimates
(PMLE) of the parameters. The PMLE of x are not of
direct interest, but provided estimates of nuisance
parameters. We now describe an iterative algorithm to
solve the PMLE of the parameters.
The PMLE of the intercept is found by setting

q
qb0

cðy; xÞ ¼ � 1

2s2
Xn
i¼1

yi � b0 �
Xq
j¼1

xijbj

0
@

1
Að�2Þ

¼ 0 ð8Þ
and solving for b0, which is

b0 ¼
1

n

Xn
i¼1

 
yi �

Xq
j¼1

xijbj

!
ð9Þ
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Setting

q
qbj

cðy; xÞ ¼ �
Pn

i¼1 ð�2xijÞðyi � b0 �
Pq

k¼1 xikbkÞ
2s2

�
2ðbj � mjÞ

2s2j

¼ 0 ð10Þ
and solving for bj, we get

bj ¼
Xn
i¼1

x2ij þ s2=s2j

" #�1

�
Xn
i¼1

xijðyi � b0 �
Xq
k6¼j

xikbkÞ þ mjs
2=s2j

2
4

3
5

ðj ¼ 1; . . . ; qÞ

ð11Þ

The residual variance is estimated by setting

q
qs2

cðy; xÞ ¼ � n

2s2

�
Pn

i¼1 yi � b0 �
Pq

j¼1 xijbj
� �2

ð�1Þ

2ðs2Þ2

¼ 0 ð12Þ
and solving for s2, which is

s2 ¼ 1

n

Xn
i¼1

yi � b0 �
Xq
j¼1

xijbj

0
@

1
A2

ð13Þ

Although the nuisance parameters x are not of
direct interest, they must be estimated from the
data. The PMLE of x are all obtained by setting
ðq=qxjÞcðy; xÞ ¼ 0, where xj is the jth component of the
nuisance parameters. The PMLE of the nuisance para-
meters are

mj ¼ bj=ðZþ 1Þ for j ¼ 1; . . . ; q ð14Þ
and

s2j ¼
1

2
ðbj � mjÞ2 þ Zm2j
h i

for j ¼ 1; . . . ; q ð15Þ

Summary of iterations

1. Set Z40 and provide initial values for y and x;
2. Update b0 using Eq. (9);
3. Update bj (j¼ 1,y, q) using Eq. (11);
4. Update s2 using Eq. (13);
5. Update mj (j¼ 1,y, q) using Eq. (14);
6. Update s2j (j¼ 1,y, q) using Eq. (15);
7. Repeat step 2 to step 6 until a certain criterion of

convergence is satisfied.

The initial values yð0Þ ¼ fbð0Þ0 ; b
ð0Þ
1 ; . . . ; b

ð0Þ
q ; s2ð0Þg ¼ f�y; 0;

. . . ; 0; s2yg are suggested for y, where �y and s2y are
sample mean and variance of the phenotypic values.

The initial values xð0Þ ¼ fmð0Þ1 ; . . . ; mð0Þq ; s2ð0Þ1 ; . . . ; s2ð0Þq g ¼
f0; . . . ; 0; 0:5; . . . ; 0:5g are suggested for x.

Statistical test
The proposed penalized likelihood method is intended
to include all markers in a single model. Theoretically, no
statistical tests are necessary because all marker effects
are estimated and none of them are missing. However,
investigators may only want to report markers with
relatively large effects. Fortunately, the penalized like-
lihood method often provides extremely small estimates
for markers not closely linked to QTL. The signals
(estimated effects) of these null markers are almost
negligible compared to those of the markers that are
linked to QTL (Xu, 2003). It is not hard to pick up
‘significant’ markers just by visually scanning on the
genome. The majority of the markers should have no
effects and their estimated effects should be close to zero.
When we plot the estimated marker effects against the
genome location, the effects of the null markers should
serve as background. Our simulation experiments show
that the background noise is indeed very close to zero,
making the signals of markers linked to QTL very clear.
How large an estimated marker effect is large enough to
warrant a spot in the final list of markers associated with
the phenotype? An objective statistical test may be
helpful. Unfortunately, a usual likelihood ratio test
cannot be performed with the penalized likelihood
method because of the overparameterization. Therefore,
we propose the following two-stage selection process to
screen the markers. All markers with jb̂jj=ŝ410�6 are
deemed to have passed the first round of selection. If
jb̂jj=ŝ � 10�6; even if it was significant statistically, it
would not be interesting biologically. In a BC population,
a QTL of this size would explain less than 10�10% of the
phenotypic variance. This selection criterion is already
quite stringent because very few spurious markers will
survive this selection owing to the enforced stringent
penalty (shrinkage). In the second stage of the selection,
we are more careful on choosing the criterion of
selection. We now modify our epistatic model so that
only effects that have passed the first round of selection
are included in the model because the dimensionality of
such a model is quite small compared to the original
oversaturated model. Owing to the dimension of the
modified model being small, we can use a regular
(unpenalized) ML method to reanalyze the data and
perform a likelihood ratio test for each QTL. The
estimated QTL effects from the penalized likelihood
using the oversaturated model are almost identical to the
effects estimated from the likelihood analysis using the
modified model that includes only the QTL surviving the
first round of selection (see results of simulation).

Let s be the total number of QTL effects that have
passed the first round of selection and y ¼
fb0; b1; . . . ; bs; s2g be the parameters that are subject to
the ML analysis for significance test. To test the null
hypothesis that H0:bj¼ 0, that is, the jth surviving QTL
(passed the first round of selection) is not true, we use
the following likelihood ratio test statistic,

LRj ¼ �2½Lðy�jÞ � LðyÞ ð16Þ
(Lander and Botstein, 1989), where y�j ¼ fb0; b1; . . . bj�1;
bjþ1; . . . ; bs; s2g is the vector of parameters that excludes
bj. As pointed out by Kao et al (1999), the choice of critical
value for claiming a significant QTL becomes compli-
cated for multiple QTL tests. For simplicity, we use the
usual LODjZ3 as the criterion, where LODj¼LRj/

Mapping epistatic QTL
Y-M Zhang and S Xu

98

Heredity



(2ln 10)ELRj/4.61. Application of the permutation test
(Churchill and Doerge, 1994) is discussed later.

Simulation studies

We conducted three simulation experiments to evaluate
the performance of the method. In the first experiment,
we simulated a single genome of 200 cM long with 21
evenly spaced markers, with equal marker distance of
10 cM. We put four main QTL effects and four pairwise
interaction effects, all of which overlap with markers.
The positions and effects of the simulated QTL are given
in Table 1 along with the simulated residual variance. We
simulated a BC population with sample size of n¼ 200
for one case and n¼ 500 for the other case. Each case was
replicated 100 times to evaluate the accuracy, the
precision, and the statistical power for each estimated
QTL effect. The total number of QTL effects included in
the model is 21(21þ1)/2¼ 231. We used the two-stage
screening process to select markers and further tested the
selected marker using the likelihood ratio tests. For each
simulated QTL, we counted the samples in which the
LOD statistic had passed 3. The ratio of the number of
such samples to the total number of replicates (100 in this
case) represented the empirical power for this QTL.
When the sample size was small, we noticed that a
marker with a simulated QTL effect was not always
significant, but a significant LOD occurred in a nearby
marker. This reflected the uncertainty of the estimated
QTL position. In this case, the simulated QTL was also
counted as significant (detected). This is why there is an
average estimate of QTL position shown in Table 1. The
table shows that the larger sample size does have a
higher power than the smaller sample size. QTL with
small effects tend to be associated with lower powers.
The method can detect the smallest QTL (explaining
2.5% of the phenotypic variance) with 63% power even
when n¼ 200.

The prior value Z¼ 5 was used in the simulation
experiment. We also tried Z¼ 10 and 30, which had
virtually no effect on the result. The convergence
criterion was chosen as jjyðtÞ � yðt�1Þjj � 10�4; where y(t)

is the vector of parameter values at the iteration. The
convergence was usually very fast, taking only 40–70
iterations to the convergence criterion.
In the second simulation experiment, we doubled the

chromosome size (400 cM long) but simulated the same
number of QTL with the same positions and effects as
those given in the first experiment. The total number
of markers was 41, with the total number of marker
effects (including all pairwise interactions) being
41(41þ1)¼ 861. The sample size was now 300 in the
second simulation experiment. We also simulated the
chromosome length 200 cM (the same as that in the first
experiment) with n¼ 300 for comparison. Again, all QTL
resided at marker positions. The objective of this
experiment was to evaluate the performance of the new
method on a more saturated model. Our prediction was
that the method would still have a satisfactory perfor-
mance, even though the number of model effects was
almost three times as large as the sample size. The results
are given in Table 2 and consistent with the above
prediction.
Finally, we simulated a single large chromosome

1800 cM long, covered by 121 evenly spaced markers
with a 15 cM per marker interval. The total number of
QTL effects included in the model was 121(121þ1)/
2¼ 7381. We increased the sample size to 600. The
number of model effects was about 12 times as large as
the number of observations. The simulated parameters
(positions and effects of QTL) are given in Table 3 for the
main effects and Table 4 for the epistatic effects. We
simulated nine main-effect QTL and 13 interacting QTL
effects. The sizes of QTL (measured by the proportions of
phenotypic variance explained by QTL) varied from 0.5
to 20%. Residual variance was set at 10. The data were
analyzed with two methods: a Bayesian method and the
penalized likelihood method. The Bayesian method was
implemented via the MCMC algorithm and it is a simple
extension of Xu (2003) by incorporating epistatic effects
into the oversaturated model. The initial values and prior
distribution of the parameters for the Bayesian analysis
were the same as those given by Xu (2003). The length of
the Markov chain was of 20 000 iterations, excluding 4000

Table 1 Effect of sample sizes on the results of epistatic QTL analysis (100 replicates)

QTL Main effect Interaction s2

Power Position Effect Power Position 1 Position 2 Effect

1 True value — 0.00 1.0000 — 0.00 80.00 1.0000 10.0000
n¼ 200 63 3.02(5.86) 1.0507(0.2852) 51 4.86(9.61) 82.38(25.81) 0.9975(0.2506) 10.7410(1.4764)
n¼ 500 92 1.22(4.41) 0.9104(0.1859) 93 0.72(3.05) 78.44(8.77) 0.9427(0.1879) 9.9434(0.7291)

2 True value — 60.00 1.4142 — 40.00 140.00 1.4142
n¼ 200 85 58.71(5.30) 1.4993(0.2908) 87 42.17(13.50) 137.74(14.33) 1.4178(0.3755)
n¼ 500 100 60.23(1.79) 1.4247(0.1804) 100 39.24(4.78) 139.50(5.14) 1.3787(0.1856)

3 True value — 140.00 2.0000 — 80.00 200.00 2.0000
n¼ 200 100 139.75(2.65) 1.9811(0.2906) 98 79.53(3.65) 199.37(2.71) 1.9659(0.3050)
n¼ 500 100 140.01(0.09) 1.9865(0.1634) 100 79.98(0.27) 200.00(0.00) 2.0079(0.1684)

4 True value — 180.00 2.8284 — 100.00 120.00 2.8284
n¼ 200 100 179.89(1.86) 2.8074(0.3012) 98 99.30(3.61) 120.10(1.67) 2.6130(0.4750)
n¼ 500 100 179.99(0.08) 2.8205(0.1856) 100 99.98(0.16) 120.00(0.00) 2.8166(0.2048)

n¼ 200 and n¼ 500 represent estimates from sample sizes 200 and 500, respectively.
The standard deviations of estimates are calculated from only the significant samples and are given in parentheses.
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iterations for the burn-in period. The chain was trimmed
by keeping one observation in every 20 iterations so that
the posterior sample size for the post-MCMC analysis
was 1000. The penalized likelihood method took about
58 iterations to converge and the total computing time
with our (SAS, 1999) program run at PC Dell Optiplex

GX 400 was about 14 h. The Bayesian analysis, however,
took about 3 weeks in the same computer. The estimated
main QTL effects are plotted in Figure 1 and the
interaction effects are plotted (3D plot) in Figure 2. For
the penalized likelihood method, the number of esti-
mated effects (including both the main and interaction

Table 2 Effect of the number of variables on the results of epistatic QTL analysis (100 replicates)

QTL Main effect Interaction s2

Power Position Effect Power Position 1 Position 2 Effect

1 True value — 0.00 1.0000 — 0.00 80.00 1.0000 10.0000
Estimate 1 87 4.48(10.76) 0.9628(0.2269) 80 2.38(7.33) 80.20(20.87) 0.9488(0.2148) 10.4211(1.2610)
Estimate 2 90 2.88(8.89) 0.9789(0.2149) 88 2.80(9.68) 76.80(14.12) 0.9727(0.2456) 10.1275(1.0965)

2 True value — 60.00 1.4142 — 40.00 140.00 1.4142
Estimate 1 97 58.94(3.95) 1.4021(0.2295) 97 40.30(6.63) 136.28(9.18) 1.3206(0.2705)
Estimate 2 98 59.06(4.12) 1.3890(0.2458) 99 39.53(3.50) 138.30(6.85) 1.3617(0.2751)

3 True value — 140.00 2.0000 — 80.00 200.00 2.0000
Estimate 1 100 140.07(1.20) 2.0031(0.2516) 99 79.96(1.34) 199.67(1.53) 1.9716(0.2229)
Estimate 2 100 140.03(0.26) 1.9890(0.2377) 100 79.50(2.63) 199.60(1.91) 1.9556(0.2276)

4 True value — 180.00 2.8284 — 100.00 120.00 2.8284
Estimate 1 100 180.00(0.23) 2.7873(0.2390) 100 99.98(0.17) 119.99(0.12) 2.7541(0.2713)
Estimate 2 100 180.08(0.76) 2.8132(0.1702) 100 99.69(2.23) 119.98(0.18) 2.7695(0.3069)

Estimates 1 and 2 represent estimates from the models of 231 and 861 QTL effects, respectively. Position 1 and 2: positions of QTL1 and QTL2,
respectively.
The standard deviations of estimates are calculated from only the significant samples and are given in parentheses.

Table 3 Simulated and estimated QTL positions and effects from a single dataset of a large genome

Marker True parameters Bayesian analysis Penalized likelihood

Position Effect Proportion Position Effect Position Effect

1 0 4.47 0.200 0 4.4593 (0.1507) 0 4.5760 (0.1477)
21 300 3.16 0.100 300 3.1493 (0.1462) 300 3.2344 (0.1475)
31 450 2.24 0.050 450 2.2770 (0.1510) 450 2.3337 (0.1471)
51 750 1.58 0.025 750 1.3133 (0.1644) 750 1.4163 (0.1459)
71 1050 1.58 0.025 1050 1.5325 (0.1470) 1050 1.5996 (0.1463)
91 1350 1.10 0.012 1350 0.9083 (0.1556) 1350 0.9644 (0.1438)
101 1500 1.10 0.012 1500 1.2145 (0.1557) 1500 1.2391 (0.1454)
111 1650 0.77 0.006 1650 0.5948 (0.2990) 1635 0.5456 (0.1363)
121 1800 0.77 0.006 1800 0.4200 (0.3479) 1800 0.5801 (0.1375)

Table 4 Simulated and estimated positions and effects of interacting QTL from a single data set of a large genome

Marker pair True parameter Bayesian analysis Penalized likelihood

Positions 1 & 2 Effect Proportion Positions 1 & 2 Effect Positions 1 & 2 Effect

1–11 0 & 150 1.00 0.010 0 & 150 0.7374 (0.1618) 0 & 150 0.8894 (0.1432)
2–119 15 & 1770 3.87 0.150 15 & 1770 3.8497 (0.1648) 15 & 1770 3.7274 (0.1476)
10–91 135 & 1350 1.30 0.017 135 & 1350 1.2942 (0.1759) 135 & 1350 1.3931 (0.1459)
15–75 210 & 1110 1.73 0.030 210 & 1110 1.5068 (0.2593) 210 & 1110 1.6738 (0.1465)
20–46 285 & 675 1.00 0.010 285 & 675 0.9463 (0.1739) 285 & 660 0.7630 (0.1416)
21–22 300 & 315 1.00 0.010 300 & 315 0.9371 (0.2765) Missing
26–91 375 & 1350 1.00 0.010 375 & 1350 1.2616 (0.1712) 360 & 1350 0.8232 (0.1424)
41–61 600 & 900 0.71 0.005 600 & 915 0.2545 (0.3102) Missing
56–91 825 & 1350 3.16 0.100 825 & 1350 3.1118 (0.1603) 825 & 1350 3.0166 (0.1474)
65–85 960 & 1260 2.24 0.050 960 & 1260 2.4575 (0.1543) 900 & 1275 0.7848 (0.1492)

960 & 1245 1.8898 (0.1468)
86–96 1275 & 1425 0.89 0.008 1275 & 1425 0.9811 (0.2198) 1275 & 1425 1.0248 (0.1443)
101–105 1500 & 1560 1.00 0.010 1500 & 1560 0.9895 (0.1645) Missing
111–121 1650 & 1800 2.24 0.050 1650 & 1800 1.8096 (0.9778) 1650 & 1800 2.3618 (0.1472)
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effects) that had passed the first round of selection was
23 (nine main effects and 14 interaction effects). In the
second round of selection, all the nine main effects and 11
of the interaction effects surpassed the critical value of
the test statistic (Table 5). One interaction effect was
partitioned into two significant effects (Table 5) and three
interaction effects were not detected (Table 4). The
penalized likelihood analysis generated results that are
quite consistent with the Bayesian analysis, except that
the former missed a few QTL effects. This observation
was expected because we gain the fast speed with
the cost of failing to detect a few very small QTL effects
(all explaining o1% of the phenotypic variance).
Among the three undetected epistatic QTL effects,
two are the interactions between two closely linked
markers, that is, marker pairs 20–21 and 101–105, and
one is an effect explaining only 0.5% of the phenotypic
variance.

If we compare results of Tables 3 and 4 (penalized
likelihood estimates, last columns) with the results of
Table 5 (the reduced likelihood estimates, columns 2 and
5) methods), we can see that the penalized estimates and
the reduced likelihood estimates are almost identical
(differ only by o10�6). Therefore, the two-stage analysis
did not change the original estimates of the genetic
effects other than facilitate a way to test the significances
of the estimated genetic effects.

Discussion

We used a BC design as an example to demonstrate the
penalized likelihood analysis. The method can be
directly applied to double haploids (DH) and recombi-
nant inbred lines (RIL). Extension to more complicated
designs is possible. For example, to analyze data for an F2
design, we need to partition the genetic effect of a single
locus into an additive effect (a) and a dominance effect
(d). Correspondingly, the epistatic effect can be parti-
tioned into additive-by-additive (aa), additive-by-
dominance (ad), dominance-by-additive (da), and dom-
inance-by-dominance (dd). The dimensionality of the
model will be doubled for the main effect QTL (a and d)
and quadrupled for the epistatic effect QTL (aa, ad, da,

and dd), but the method remains the same. The model
appears to be

yi ¼ a0 þ
Xp
j¼1

ðzijaj þ wijdjÞ þ
Xp
ros

½zirzisðaaÞrs þ zirwisðadÞrs

þ wirzisðdaÞrs þ wirwisðddÞrs þ ei
ð17Þ

where Zij¼ {1, 0, �1} and Wij¼ {0, 1, 0} for the three
genotypes {QQ, Qq, qq}. One can adopt the b0 þ

P
xijbj

notation, as given in equation (2), for the above model
and thereafter use the same method to estimate all the
model effects. For a four-way cross design, the genetic
effect of a single locus can be partitioned into three
terms, allelic effect from the male parent (am), allelic
effect from the female parent (af), and the dominance
effect (d). Correspondingly, the epistatic effect can be
partitioned into 3� 3¼ 9 terms. The incidence variables
(coefficients of the main QTL effects) given by Xu et al
(2003) for a four-way cross design may be adopted here.
The incidence variables for the epistatis effects simply
take the products of the corresponding incidence vari-
ables of the main effects. No additional theory and
methods are involved other than that the dimension of
the model should be expanded. Extension of the method
to pedigree data is not obvious and deserves further
investigation.
Kao and Zeng (2002) proposed the use of Cockerham’s

(1954) model to define the epistatic and other model
effects. Cockerham’s model in its original form only
applies to two loci. For interactions involving multiple
loci, substantial additional work may be required to
construct a Cockerham’s model. The key of the Cocker-
ham’s model is the orthogonality of the model effects.
Cockerham (1954) defined model effects by orthogonal
linear contrasts of the original genotypic effects. The

Figure 1 Plot of the estimated main QTL effects against the genome
location using the penalized likelihood method.

Figure 2 Plot (3-D) of the interaction effects against the genome
location. The left-hand side of the figure shows the true effects (red)
and the right-hand side of the figure shows the estimated effects
(blue or green). The blue and green colored prisms represent
positive and negative estimates of the interaction effects, respec-
tively.
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linear contrasts may be called the statistical parameters,
while the genotypic effects may be called the genetic
parameters. The transformation from genetic parameters
into statistical parameters has several desirable proper-
ties, including additivity of the variance components and
ease of parameter estimation. However, the additive
effects (defined as the linear contrasts) also contain
dominance and epistatic effects defined in the original
genotypic scale if the population is in linkage disequili-
brium. This, unfortunately, has caused some problem in
interpreting the biological meanings of the statistical
parameters. Nonetheless, we might use the term Cock-
erham’s model if orthogonal linear contrasts are esti-
mated as the model effects. In that case, Cockerham’s
model in the context of multiple QTL should be
described using the following orthogonal transforma-
tions. Let us rewrite model (2) as

yi ¼ b0 þ
Xq
j¼1

cijbj þ ei

which can be further expressed in matrix notation by

yi ¼ b0 þ cibþ ei ð18Þ
where ci¼ [ci1,y,ciq] and b¼ [b1,y, bq]T. Model (18)
may be interpreted as the Cockerham’s model if the
following constraints are enforced,Xn

i¼1

ci ¼ 0q and
Xn
i¼1

cT
i ci ¼ nIq�q

where 0q is a 1� q vector of zeros and Iq� q is an identity
matrix with dimension q. Such a ci can be found using

ci ¼ ðxi � �xÞL;
where L is a generalized inverse of the Choleskey
decomposition (upper triangular matrix) ofX

¼ 1

n

Xn
i¼1

ðxi � �xÞTðxi � �xÞ;

ie, L¼
P

�1/2 and LTL¼
P

�1. By taking such an orthogo-
nal transformation, we can see that b0 ¼ b0 þ �xb0 and b¼
L�1b. Substituting ci, b0 and b into equation (18), we get

yi ¼ b0 þ cibþ ei

¼ b0 þ �xbþ ðxi � �xÞLL�1bþ ei
¼ b0 þ xibþ ei

ð19Þ

and thus we have recovered model (2). One can directly
deal with the Cockerham’s model using our penalized
likelihood method for estimating b, or estimate the
original genetic parameters b̂ with our method and then
convert them into Cockerham’s statistical parameters
using b̂ ¼ L�1b̂. With the Cockerham’s orthogonal trans-
formation, we can see that the total phenotypic variance
can be partitioned into independent variance compo-
nents, as shown below,

VarðyiÞ ¼
Xq
j¼1

VarðcijbjÞ þ VarðeiÞ

¼
Xq
j¼1

VarðcijÞb2j þ s2

¼
Xq
j¼1

b2j þ s2

ð20Þ

The Bayesian method developed by Xu (2003) is a
model-selection-free method for multiple QTL mapping.
The method is very simple so that it can be easily
extended to mapping epistatic effects with very little
additional effort. However, because the method is
implemented via the MCMC, computing time then
becomes a major concern for that extension. Within each
iteration, a huge number of parameters need to be
updated (sampled) and the posterior sample size should
be of the order of tens of thousands. Although the
computing times spent on updating parameters in each
iterations are almost the same for the proposed penalized
method and the Bayesian method, the former only takes
a few (o70 usually) iterations to converge, while the
latter takes several orders of magnitude of iterations to
converge to a stationary distribution. The time-saving
factor was the major motivation for developing the
current method. In addition, the method facilitates an
approximate hypothesis test for each putative QTL effect,
while the Bayesian method of Xu (2003) does not.

The penalized likelihood method bears all the shrink-
age property of the method of Xu (2003). This explains
why both methods can handle an extremely over-
saturated linear model. However, the shrinkage factor
is even more selective in the penalized method. This is
reflected by the additional prior distribution assigned to
mj, which is the prior mean for bj and is equal to zero in
the Bayesian method. Here, in the penalized analysis,
the prior for mj is pðmjÞ ¼ Nð0; s2j =ZÞ with Z40, which
facilitates a mechanism to estimate mj from the data. It is
different from Gianola et al (2003). With an estimated mj
away from zero, the shrinkage for large QTL effects is not
as stringent as when mj¼ 0. However, when the QTL
effects are indeed very small, the estimated mj is closer to
zero than bj is, and thus the shrinkage becomes more
stringent for smaller bj than for larger bj. This more
selectively different shrinkage is one of the major
differences of the penalized likelihood method from the
Bayesian method of Xu (2003). The subjective parameter
Z40 does not have a major influence on the result as long
as Zo1. We tested a wide range of values for Z40, for
example, 10, 30, 50, and so on; the results were all
comparable to that when Z¼ 5. We understand that if
Z ! 1; this is of no difference from setting a prior
pðbjÞ ¼ Nð0; s2j Þ for the regression coefficient, and the

Table 5 Likelihood ratio test for the significance of the estimated
QTL effects

QTL effect Estimate LOD Parameter Estimate LOD

b1 4.5760 121.98 b15� 75 1.6738 24.85
b21 3.2344 73.36 b19� 106 �0.4299 2.88NS

b31 2.3337 43.71 b2� 45 0.7630 6.53
b51 1.4163 18.46 b22� 32 �0.3499 2.33NS

b71 1.5996 23.25 b25� 91 0.8232 7.26
b91 0.9644 9.48 b26� 29 0.4798 2.77NS

B11 1.2391 13.92 b56� 91 3.0166 66.43
b111 0.5456 3.82 b61� 86 0.7848 6.53
B11 0.5801 4.01 b65� 84 1.8898 29.91
b1�11 0.8894 8.50 b86� 96 1.0248 10.92
b2� 119 3.7274 91.19 b111�121 2.3618 45.24
b10� 91 1.3931 17.76

NSThese tests are not significant based on the LOD 3 criterion.
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result is not as good as that when Zo1. Our experience
shows that 1rZr30 works well for all the simulated
data we have examined.

The proposed penalized likelihood method also differs
from that of Boer et al (2002), who defined the epistatic
effect of each marker as a variance component of the
current marker with all other markers (background). Our
method actually pinpoints the occurrence of the interac-
tion between specific markers. Is it possible to include
higher-order interactions in the epistatic model? Theore-
tically, it is possible because our model does not have
restriction on the number of model effects. Practically,
however, there is a concern with the lengthy computing
time. Based on the assumption of higher-order interac-
tions being less important than lower-order interactions
(Falconer, 1989), the pairwise epistatic genetic model
should suffice. The proposed penalized likelihood
method also differs from that of Kao and Zeng (2002).
Although the latter makes use of the orthogonal property
of Cockerham’s model, variable selection is still needed.

The penalized likelihood method is similar to the BIC
or other information-criterion-based methods for para-
meter estimation (Akaike, 1973; Schwarz, 1978; Jansen,
1994; Broman and Speed, 2002; Sillanpaa and Corander,
2002). However, these methods were designed mainly for
model selection. We adopted a similar idea, but allowed
the penalty to be a function of the parameters. This
modification appears to be trivial, but it has played an
important role in improving the performance of the
method. All variables are included in the model and no
variable selection is performed, and thus we take no risk
of missing any important QTL effects.

We used LODZ3 as the criterion to declare statistical
significance. We found no false positive QTL. LOD¼ 3 is
somewhat arbitrary. We then took a permutation
approach (Churchill and Doerge, 1994) to find the
empirical critical values. These empirical 95% critical
values tend to be small (all less than 1.0, data not shown).
Based on the empirical critical value, we did find a few
false-positive QTL. For the large-genome simulation
experiment (the third simulation experiment), three
false-positive QTL were found. Considering a total
number of 7381 effects included in the model, we think
that the false positive rate is extremely low. In the first
and second simulation experiments (small genome
simulations), we only found eight false-positive QTL.
Therefore, the probability of false positive is very low.
Our experience indicates that the penalized likelihood
analysis usually generates such clear signals of QTL
effects that a statistical test may not even be required.

The method was validated using simulated data.
When applied to real data for estimating epistatic effects,
most of the favorable properties will remain. However,
some minor modifications are required before the
method is applied to real data. (1) In reality, markers
may not be evenly distributed along the genome.
Although our method does not depend on the unifor-
mity of marker distribution, very tightly linked markers
may cause poor estimates of the marker effects due to
high degree of multicollinearity. Therefore, it is recom-
mended to use only one marker from a cluster of
markers. (2) Missing marker genotypes may occur in real
data analysis. Multiple imputations for the missing
marker genotypes (Sen and Churchill, 2001) may be
adopted here to simulate the missing genotypes. This

requires multiple analyses of the data, each for one
imputed data set. In all, 10–20 imputed data sets may
suffice (Sen and Churchill, 2001). Alternatively, we may
replace the indicator variables for the missing marker
genotypes by their conditional expectations calculated
with the multipoint method (Rao and Xu, 1998). (3)
When two markers are far away, it is possible to insert a
virtual marker in the middle of the interval bracketed by
the markers. The genotypes of the virtual markers are
missing across all individuals. Imputations of the virtual
marker genotypes are required to complete the data
analysis. (4) In real-data analysis, the expected outcome
will be slightly different from what was observed in the
simulation study in that the background noise of the
plots (see Figure 2) will be larger in the real data analysis
than in the simulation study. This is not a deficit of the
method; rather, it is due to the polygenic nature of
quantitative traits. The high ‘noise’ may not be the true
noise but caused by the polygenic effects. Excluding
these background polygenic effects from the model, as
done in any model selection approach, may be detri-
mental because the polygenic effects, collectively, may
significantly contribute to the residual variance.
Finally, we have paid all our attention to developing

the penalized likelihood method for handling over-
saturated model. We only evaluated marker effects so
that we could focus on the performance of the penalized
likelihood method on an oversaturated model rather
than digressing to estimating QTL positions. Broman and
Speed (2002) took the same approach when they
investigated various model selection algorithms on
QTL mapping. They fixed QTL at marker positions so
that they could concentrate on the main issue of model
selection rather than addressing estimation of QTL
positions. The natural next step would be to develop a
true QTL-mapping method incorporating the penalized
likelihood method, in which we would allow QTL to
move away from markers positions. This has been
carried out in the Bayesian shrinkage analysis of Wang
et al (2005) for main effect QTL. Extension to QTL with
epistatic effects, making use of this penalized likelihood
framework, is underway and will be reported in a
subsequent paper.
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