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Many disease resistance traits in plants have a polygenic
background and the disease phenotypes are modified by
environmental factors. As a consequence, the phenotypic
values usually show a quantitative variation. The phenotypes
of such disease traits, however, are often measured in
discrete but ordered categories. These traits are called
ordinal traits. In terms of disease resistance, they are called
quantitative resistance traits, as opposed to qualitative
resistance traits, and are controlled by the quantitative
resistance loci (QRL). Classical quantitative trait locus
mapping methods are not optimal for ordinal trait analysis
because the assumption of normal distribution is violated.
Methods for mapping binary trait loci are not suitable either

because there are more than two categories in ordinal traits.
We developed a maximum likelihood method to map these
QRL. The method is implemented via a multicycle expecta-
tion-conditional-maximization (ECM) algorithm under the
threshold model, where we can estimate both the QRL
effects and the thresholds that link the disease liability
and the categorical phenotype. The method is verified in
simulated data under various combinations of the para-
meters. An SAS program is available to implement the
multicycle ECM algorithm. The program can be downloaded
from our website at www.statgen.ucr.edu.
Heredity (2005) 94, 119–128. doi:10.1038/sj.hdy.6800583
Published online 15 September 2004

Keywords: ECM-algorithm; maximum likelihood; ordinal trait; quantitative resistance locus

Introduction

Many traits of biological and economic importance in
plants, animals and human populations are measured in
a discrete manner. For example, most disease resistance
traits in plants, such as sheath blight resistance in rice
(Zou et al, 2000), clubroot resistance in brassica napus
(Manzanares-Dauleux et al, 2000) and cucumber mosaic
virus resistance in pepper (Caranta et al, 2002), are all
scored in several ordered categories, based on the
magnitude of disease symptom. Similarly, there are
many characters in animals and humans, such as scores
for calving difficulty, expression of congenital malforma-
tions, numbers of reproductive events and so on, which
are expressed as binary or ordinal traits. Although the
expression of some discrete traits is a consequence of the
expression of a single segregating factor, multiple loci are
often involved (Lynch and Walsh, 1998). Naturally, we
may postulate that a number of different genes along with
a number of environmental variables act jointly as risk
and protective factors for the trait development. When
enough risk factors accumulate and greatly outweigh the
protective factors, the trait phenotype develops. As many
factors contribute to the trait variation, the liability or
predisposition towards the trait is really a continuous
and quantitative trait. Once the liability passes a certain
critical point or threshold, the trait phenotype emerges.
Attributes that are categorical on an outward (observed)

scale but believed to be continuous on an underlying
(unobserved) scale are called the threshold or quasi-
continuous characters (Lynch and Walsh, 1998).
Rice sheath blight, caused by Rhizoctonia solani Kühn,

is one of the three major diseases of rice and severely
impairs both rice yields and quality. Resistance to sheath
blight in the rice shows a quantitative nature, that is,
different rice varieties show different degrees of resis-
tance and the disease phenotypes usually overlap (Zou
et al, 2000). The phenotypic value of sheath blight
resistance is measured in grade, ranging from 0
(complete resistance) to 9 (complete susceptible) (Rush
et al, 1976). However, the distribution of the grade
severely deviates from normality. Therefore, classical
quantitative genetics analysis for normal traits is not
optimal for this type of ordinal traits. Binary trait
analysis techniques are not suitable either because they
cannot handle multiple categories. Therefore, new
statistical methods are required to map such quantitative
resistance loci (QRL).
A number of statistical methods are now available to

map quantitative trait locus (QTL) for continuous traits
(Lander and Botstein, 1989; Haley and Knott, 1992;
Jansen, 1993; Zeng, 1994; Kao et al, 1999), but relatively
little work has been carried out on mapping ordinal traits
(Xu and Atchley, 1996; Visscher et al, 1996; Galecki et al,
2001; Xu et al, 2003), especially for multiple ordinal traits
(Hackett and Weller, 1995; Rao and Xu, 1998; Rao and Li,
2001). Genetic analysis for ordinal categorical traits is
difficult because the observed phenotype (category)
cannot be described by a straightforward linear model.
Hackett and Weller (1995) developed an approximate
logistic regression method using the threshold model to
map QTL for such traits in backcross (BC) population.
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Rao and Xu (1998) also proposed a similar method for
QTL mapping in four-way crosses. Rao and Li (2001)
further extended the methods to map QTL using
independent multiple families. All the above methods
were implemented using either a different statistical
model from traditional QTL mapping or a different
optimization algorithm from the commonly used EM
algorithm. We found that the models and the optimiza-
tion algorithms for mapping ordinal traits and quantita-
tive traits can be formulated in the same framework.
Thus, QTL mapping and ordinal trait mapping can be
unified under the same statistical framework. The same
linear model and EM algorithm can be used for both
types of traits. We also found that the multicycle
expectation-conditional-maximization (ECM) algorithm
developed by Meng and Rubin (1993), an extended EM
algorithm, is more intuitive and easy to understand to
the QTL mapping community. In addition, the multicycle
ECM algorithm can be easily programmed in computers.
Therefore, the objective of this study is to introduce such
an ECM algorithm for mapping ordinal traits.

Mapping populations that can be handled in most
statistical methods involve only two inbred lines. The
drawback of these designs is that the statistical inference
space is quite narrow (within the two inbred lines), and
thus results from one cross cannot be generalized to
other crosses derived from different inbred lines. Xu
(1996, 1998) proposed the four-way cross design of QTL
mapping, intended to increase the statistical inference
space and the opportunity for detecting more QTL. We
found that the different designs of line cross can be
incorporated into a unified QTL mapping strategy that is
aimed to handle a four-way cross family but treat
commonly used mapping populations, such as F2 and
BC, as special cases. In this study, we will discuss how to
implement this strategy.

Theory and methods

Statistical model for ordinal traits
Consider n individuals in the mapping population and
denote the observed ordered category of individual j by
wj where j¼ 1, 2,y,n. For C categories, the phenotype of
an individual can be defined as wj¼ c if individual j
belongs to class c, for c¼ 1,y,C. A set of fixed thresholds,
t1, t2,y, tC�1, on the underlying scale define the observed
categories on an ordinal scale 1, 2,y,C. Further define yj
as the underlying variable for individual j. We thus have
model

tc�1oyj�tc , wj ¼ c; t0 ¼ �1; tC ¼ 1 ð1Þ
Here we have Cþ 1 thresholds but only C�1 thresholds,
t¼ {t1, t2,y, tC�1}, which are parameters that are subject
to estimation.

Although the natural choice for the distribution of y
would be the normal distribution, Hackett and Weller
(1995), Rao and Xu (1998) and Rao and Li (2001) all used
logistic distribution to approximate the normal distribu-
tion for the purpose of computational simplicity. In
contrast to the above methods, we directly use the
normal distribution. The underlying variable y is
assumed to be a continuous variable similar to the
phenotypic value of a common quantitative trait. The
only difference is that yj is not observable but inferred

from the observed phenotype of individual j. As a
quantitative trait, yj can be described by the linear model

yj ¼ Xjbþ Zjuþ ej ð2Þ
where b is a vector of nongenetic effects, for example, block
and year effects in plant or sex and age effects in animals,
Xj is a known design matrix for the nongenetic effects, u is
a vector of genetic effects, Zj is the design matrix for the
genetic (QTL) effects, and ej is a random environmental
effect defined as a standardized normal variable.

Under this assumption, the probability that individual
j is classfied into the cth category is

Prðwj ¼ cjZj; t;b;uÞ ¼Prðtc�1oyj�tcjZj; t;b;uÞ
¼ Fðtc � Xjb� ZjuÞ
� Fðtc�1 � Xjb� ZjuÞ

ð3Þ

where F(tc�Xjb�Zju) is the standard normal cumulative
distribution function. The above multiple thresholds
model for ordinal trait provides a link between wj and
yj. If we know the thresholds, mapping QTL for ordinal
categorical trait has been formulated as a problem of
mapping QTL for regular quantitative trait. The difficulty,
however, is that these thresholds are unknown and must
be estimated simultaneously along with the QTL effects.

Genetic model of a four-way cross
The genetic model is developed based on a four-way
cross design because backcross and F2 designs are shown
to be special cases of such a general design. The genetic
model for a four-way cross has been proposed by Xu
(1996, 1998). In order for the paper to be self-contained,
these models are summarized and described here. Let L1
and L2 be the two inbred lines initiating the first cross and
L3 and L4 be the inbred lines intiating the second cross.
Denote the QTL genotypes of L1 and L2 by Q1

mQ1
m and

Q2
mQ2

m, respectively, and the genotypes of L3 and L4 by
Q1

f Q1
f andQ2

f Q2
f , respectively. The genetic constitution of the

four-way cross population will consist of four genotypes:
Q1

mQ1
f , Q1

mQ2
f , Q2

mQ1
f and Q2

mQ2
f , with equal frequency. Let

Gab be the value of genotype Qa
mQb

f where a,b¼ 1, 2, and it
can be expressed by the following linear model:

G ¼ Hu ð4Þ
where

G ¼

G11

G12

G21

G22

2
664

3
775; H ¼

1 1 1
1 �1 �1
�1 1 �1
�1 �1 1

2
664

3
775 and u ¼

am

af

d

2
4

3
5:

The three elements of vector u are defined as the
additive effect for the maternal parent, the additive effect
for the paternal parent and the dominance effect of the
QTL, respectively. Let Hg be the gth row of matrix H,
then G11¼H1u, G12¼H2u, G21¼H3u and G22¼H4u.

We now connect the threshold model and the genetic
model in the four-way cross. In model (2), Zj¼H1 if
individual j takes the first genotype Q1

mQ1
f and Zj¼H2 if j

takes the second genotype Q1
mQ2

f and so on. Model (2) is a
general linear model (GLM) with missing value in Zj

because the genotype of j is not observable.
The next step of the GLM analysis with missing value

is to infer the probabilities of QTL genotypes conditional
on marker information, denoted by pjg(0)¼Pr(Zj¼Hg|IM)

Mapping quantitative resistance loci
C Xu et al

120

Heredity



for g¼ 1,y, 4 where IM represents marker information.
Multipoint method (Rao and Xu, 1998) can be used to
infer the conditional probabilities of QTL genotypes. This
method is the same as Jiang and Zeng (1997) in dealing
with missing or partially informative markers and can be
implemented in a simple way.

Maximum likelihood estimation (MLE)
Let us denote the parameters by a vector h¼ {t,b,u}. The
probability of phenotype for the jth individual condi-
tional on Zj is

PrðwjjZj; hÞ ¼Fðtc � Xjb� ZjuÞ
� Fðtc�1 � Xjb� ZjuÞ for wj ¼ c

ð5Þ

Since Zj is missing and only pjg(0) can be calculated, the
actual likelihood function for the jth individual is

PrðwjjhÞ ¼
X4
g¼1

pjg½Fðtc � Xjb�HguÞ

� Fðtc�1 � Xjb�HguÞ�
ð6Þ

The overall log likelihood for the entire mapping
population is

LðhÞ ¼
Xn
j¼1

log½PrðwjjhÞ� ð7Þ

Solving the above log likelihood function is tedious. We
now introduce a multicycle ECM algorithm (Meng and
Rubin, 1993) to find the solution. The multicycle ECM
algorithm is to perform one E step before each CM step
or a few selected CM steps. A cycle is defined as one E
step followed by one CM step. The proposed multicycle
ECM solution takes advantage of the simplicity of the
original linear model with both yj and Zj being treated as
missing values.

If Zj and yj were observed for every individual, the
estimates of the parameters b and u at the (kþ 1)th
iteration could be found explicitly using the following
iterative equations by the two conditional maximizatiom
(CM) steps:

bðkþ1Þ ¼
Xn
j¼1

XT
j Xj

2
4

3
5
�1 Xn

j¼1

XT
j ðyj � Zju

ðkÞÞ

2
4

3
5

uðkþ1Þ ¼
Xn
j¼1

ZT
j Zj

2
4

3
5
�1 Xn

j¼1

ZT
j ðyj � Xjb

ðkþ1ÞÞ

2
4

3
5

ð8Þ

In QTL mapping for continuous traits, Zj is missing
but the distribution of Zj is given, the ECM algorithm can
be adopted to take advantage of the above equations.
The ECM equations simply replace all the terms related
to Zj by their expectations, that is,

bðkþ1Þ ¼
Xn
j¼1

XT
j Xj

2
4

3
5
�1 Xn

j¼1

E½XT
j ðyj � Zju

ðkÞÞ�

2
4

3
5

uðkþ1Þ ¼
Xn
j¼1

EðZT
j ZjÞ

2
4

3
5
�1 Xn

j¼1

E½ZT
j ðyj � Xjb

ðkþ1ÞÞ�

2
4

3
5

ð9Þ

The expectations are obtained conditional on both
marker information and the value of liability yj. The
connection between the phenotype and the QTL
genotype is through the parameter values, but the
parameters are what we are trying to find. Therefore,
we need iterations on equation (9) by providing some
initial values of the parameters to start the iteration.
This is the ECM algorithm. The E step is to find the
expectations and the CM step is to invoke equation (9)
for iterations.
Recall that the probability of Zj conditional on marker

information is denoted by pjg(0). This probability may be
called the prior probability. After incorporating the
phenotypic value, we obtain the posterior probability at
the (kþ 1)th iteration, denoted by

p
ðkþ1Þ
jg ¼PrðZj ¼ HgjIM; yjÞ

¼
p
ð0Þ
jg fðyj � Xjb

ðkÞ �Hgu
ðkÞÞP4

h¼1 p
ð0Þ
jh fðyj � Xjb

ðkÞ �HhuðkÞÞ

ð10Þ

where

fðyj � Xjb
ðkÞ �Hgu

ðkÞÞ

¼ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðyj � Xjb

ðkÞ �Hgu
ðkÞÞ2


 �

is the standardized normal density. Note that the prior
probability pjg(0) in equation (10) is used for all iterations to
calculate the posterior probability.
The expectations are actually obtained using the

posterior probabilities rather than the prior probabilities.
Therefore,

E½XT
j ðyj � Zju

ðkÞÞ� ¼
X4
g¼1

p
ðkþ1Þ
jg XT

j ðyj �Hgu
ðkÞÞ

EðZT
j ZjÞ ¼

X4
g¼1

p
ðkþ1Þ
jg HT

gHg

E½ZT
j ðyj � Xjb

ðkþ1ÞÞ� ¼
X4
g¼1

p
ðkþ1Þ
jg HT

g ðyj � Xjb
ðkþ1ÞÞ

ð11Þ

The problem here is that yj is also missing for ordinal
traits. Thus, we need to use ŷy, the expectation of y
conditional on w, Zj and h, in place of y for the estima-
tion of h before each CM step and this becomes the
multicycle ECM.
As t contains a set of parameters different from u

and b, we now build the equations as follows. The
solution for b and u conditional on t at the (kþ 1)th
iteration is

bðkþ1Þ ¼
Xn
j¼1

XT
j Xj

2
4

3
5
�1 Xn

j¼1

E½XT
j ðŷy

ðkþ1Þ
j � Zju

ðkÞÞ�

2
4

3
5

uðkþ1Þ ¼
Xn
j¼1

EðZT
j ZjÞ

2
4

3
5
�1 Xn

j¼1

E½ZT
j ðŷy

ðkþ1Þ
j � Xjb

ðkþ1ÞÞ�

2
4

3
5

ð12Þ
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Before taking the above CM steps, we first need to
calculate the corresponding expectations by

E½XT
j ðŷy

ðkþ1Þ
j � Zju

ðkÞÞ�

¼
X4
g¼1

p
ðkþ1Þ
jg ½XT

j ðŷy
ðkþ1Þ
jg �Hgu

ðkÞÞ�

E½ZT
j ðŷy

ðkþ1Þ
j � Xjb

ðkþ1ÞÞ

¼
X4
g¼1

p
ðkþ1Þ
jg ½HT

g ðŷy
ðkþ1Þ
jg � Xjb

ðkþ1ÞÞ�

ð13Þ

where

ŷy
ðkþ1Þ
jg ¼ Eðyjjwj; h

ðkÞ;Zj ¼ HgÞ

¼ Xjb
ðkÞ þHgu

ðkÞ þ
XC

c¼1
iðwj¼cÞ


fðtðkÞc�1 � Xjb

ðkÞ �Hgu
ðkÞÞ � fðtðkÞc � Xjb

ðkÞ �Hgu
ðkÞÞ

FðtðkÞc � Xjb
ðkÞ �HguðkÞÞ � FðtðkÞc�1 � Xjb

ðkÞ �HguðkÞÞ
ð14Þ

The quantity iðwj¼cÞ in (14) is an indicator variable and
defined as one for wj¼ c and zero otherwise. Formulae
(12)–(14) consist of the first cycle in our multicycle ECM
algorithm.

A closed form for the exact solution of t is hard to
define. However, an explicit solution can be approxi-
mated. The solution of the cth element of t, for
c¼ 1,y, (C�1), conditional on b and u at the (kþ 1)th
iteration is

tðkþ1Þ
c ¼ � 1

n

Xn
j¼1

E ŷy
ðkþ1Þ
j � Xjb

ðkþ1Þ � Zju
ðkþ1Þ

h i
ð15Þ

where

E ŷy
ðkþ1Þ
j � Xjb

ðkþ1Þ � Zju
ðkþ1Þ

h i

¼
X4
g¼1

p
ðkþ1Þ
jg ŷy

ðkþ1Þ
jg � Xjb

ðkþ1Þ �Hgu
ðkþ1Þ

h i ð16Þ

and

ŷy
ðkþ1Þ
jg ¼Eðyjgjwj;b

ðkþ1Þ;uðkþ1Þ; tðkÞ;Zj ¼ HgÞ

¼Xjb
ðkþ1Þ þHgu

ðkþ1Þ � tðkÞc

� iwj�c
fðtðkÞc � Xjb

ðkþ1Þ �Hgu
ðkþ1ÞÞ

FðtðkÞc � Xjb
ðkþ1Þ �Hguðkþ1ÞÞ

þ iwj4c
fðtðkÞc � Xjb

ðkþ1Þ �Hgu
ðkþ1ÞÞ

1� FðtðkÞc � Xjb
ðkþ1Þ �Hguðkþ1ÞÞ

ð17Þ

The quantity iðwj�cÞ in (17) is also an indicator variable
and defined as one for wjrc and zero otherwise. Here we
have (C�1) thresholds to estimate and thus have (C�1)
ECM cycles. In each cycle, we first calculate the
expectation using equations (16) and (17) and then
estimate the threshold by using equation (15). Therefore,
we have a total of C ECM cycles in one iteration for
estimation of all the parameters.

Note that pjg(kþ 1) used in equations (13) and (16) for
ordinal traits are different from that used in equation (10)
for quantitative traits. The pjg(kþ 1) used here for ordinal

traits is

p
ðkþ1Þ
jg ¼ PrðZj ¼ HgjIM;wjÞ

¼
p
ð0Þ
jg

PC
c¼1 iðwj¼cÞ½FðtðkÞc � Xjb

ðkÞ �Hgu
ðkÞÞ � FðtðkÞc�1 � Xjb

ðkÞ �Hgu
ðkÞÞ�

� �
P4

h¼1 p
ð0Þ
jh

PC
c¼1 iðwj¼cÞ½FðtðkÞc � Xjb

ðkÞ �HhuðkÞÞ � FðtðkÞc�1 � Xjb
ðkÞ �HhuðkÞÞ�

� �

ð18Þ
The calculation begins with some starting values for b(0),
u(0), t(0) and pjg(0). Iterations are then made between (18),
(14), (13), (12), (17), (16), and (15) and terminated until a
predetermined convergence criterion is satisfied. The
MLE of parameters are denoted as b̂b; ûu and t̂t, which will
then be used for the calculation of the maximum
likelihood value for hypothesis testing.

Likelihood ratio test statistic
Define the log-likelihood value evaluated at the MLE of
parameters as

LðĥhÞ ¼
Xn
j¼1

log½PrðwjjĥhÞ� ð19Þ

where

PrðwjjĥhÞ ¼
X4
g¼1

p
ð0Þ
jg PrðwjjZj; ĥhÞ

and

PrðwjjZj; ĥhÞ ¼
XC
c¼1

iðwj¼cÞ½Fðtc � Xjb̂b� ZjûuÞ

� Fðtc�1 � Xjb̂b� ZjûuÞ�
This is also called the likelihood value under the full
model. We need the likelihood values under various
restricted models to test various hypotheses.

The overall null hypothesis is no effect of QTL at the
locus of interest, denoted by H0: am¼ af¼ d¼ 0 or H0:
Lu¼ 0, where

L ¼
1 0 0
0 1 0
0 0 1

2
4

3
5

If we solve the MLE of the parameters under the
restriction of Lu¼ 0 and evaluate the likelihood value
at the solutions with this restriction, we have

LðĥhjLu ¼ 0Þ ð20Þ

The likelihood ratio test statistic is

L ¼ �2½LðĥhjLu ¼ 0Þ � LðĥhÞ� ð21Þ

Various other test statistics can be defined by redefining
the L matrix. To test the hypothesis of H1: am¼ 0,
we define L1¼ [1 0 0]. The likelihood ratio test statistic
is L ¼ �2½LðĥhjL1u ¼ 0Þ � LðĥhÞ�. To test the hypo-
thesis of H2: af¼ 0, we define L2¼ [0 1 0] and use
L ¼ �2½LðĥhjL2u ¼ 0Þ � LðĥhÞ�. Similarly, we use
L ¼ �2½LðĥhjL3u ¼ 0Þ � LðĥhÞ� to test the hypothesis of
H3: d¼ 0 where L3¼ [0 0 1].

Extension to F2 and BC populations
The four-way cross model is a general model from which
the F2 and BC models are considered as special cases. Let
us first consider a BC population. The genotypes of the
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two parents of the BC family is defined as Q1
mQ2

f Q1
mQ1

m

or Q1
mQ2

f Q2
f Q2

f , depending on which inbred line is used
as the tester. The constitution of genotypes of the mating
pair may be called the mating type. Let us assume that
Q1

mQ2
f Q2

f Q2
f is the parental mating type for the BC

family. A progeny from this mating type can take one of
the four possible genotypes: Q1

mQ2
f , Q1

mQ2
f , Q2

f Q2
f and

Q2
f Q2

f . Note that the first and the second genotypes are
not distinguishable, and neither are the third and the
fourth. If we use the same notation as that of the four-
way cross for the four genotypic values, we have
G11¼G12 and G21¼G22. The genetic effects defined in
the notation of a four-way cross are am¼G11þ
G12�G21�G22, af¼G11�G12þG21�G22¼ 0 and d¼
G11�G12�G21þG22¼ 0. Therefore, we can use the same
four-way cross model for the BC mapping with the
restriction of af¼ d¼ 0. This can be acomplished by
searching for the MLE of the four-way cross model with
the restriction of Lu¼ 0, where

L ¼ 0 1 0
0 0 1


 �

All marker genotypes are considered as either partially
informative (when typed) or noninformative (when
missing), and thus the same multipoint method can be
used to infer the QTL genotype of a putative position
using all markers.

Let us now consider an F2 population. The genotypes
of the two parents of the F2 family can be defined as
Q1

mQ2
f Q1

mQ2
f . A progeny from this parental mating type

can take one of the four possible genotypes: Q1
mQ1

m, Q1
mQ2

f ,
Q2

f Q1
m and Q2

f Q2
f . Note that the second and the third

genotypes are not distinguishable. If we use the same
notation as that of the four-way cross for the four
genotypic values, we have G12¼G21. The genetic effects
defined in the four-way cross are am¼G11þ
G12�G21�G22, af¼G11�G12þG21�G22 and d¼
G11�G12�G21þG22. As G12¼G21, we have am¼ af. There-
fore, we can use the same four-way cross model for the
F2 mapping with the restriction of am¼ af. This can be
acomplished by searching for the MLE of the four-way
cross model with Lu¼ 0, where L¼ [1 �1 0]. A marker
genotype is considered as fully informative if it is
homozygous. A heterozygous genotype is considered
as partially informative because we cannot tell the
difference between the second and the third genotypes.
The same multipoint method can be used to infer the
QTL genotype of a putative position.

Simulation studies
We designed a series of simulation experiments to verify
the proposed multicycle ECM algorithm and the com-
puter program. Since F2 and BC populations are special
cases of the four-way cross design, for the purpose of
simplicity, we only simulated a BC population. We
assumed that the liability of a BC population has a zero
mean and unity residual variance. A single QTL was
placed at position 25 cM (between markers 3 and 4) of a
chromosome with 100 cM long covered by 11 evenly
distributed markers. For the single QTL model, the QTL
variance is defined as a2, where a is the QTL effect (the
difference of the allelic values of the segregating parent
of the BC progeny). If the segregating parent is the
female parent, a¼ af, otherwise, a¼ am (see the notation in

the previous paragraph). The QTL variance in the
traditional BC analysis is a2/4, which is different from
what we defined here. This is because we defined the
genotype indicator variable as 1 and �1 for the two
alternative genotypes, whereas the genotype indicator
variable is defined as 1 and 0 for the two alternative
genotypes in the traditional BC analysis (Lynch and
Walsh, 1998). The total variance of the liability is sy2¼ a2

þ 1 because the environmental variance of the liability is
defined as 1. The proportion of the liability variance
explained by the QTL is called the QTL heritability and is
denoted by h2¼ a2/(a2þ 1).

Comparison with logistic regression
In the first simulation experiment, we simulated five
ordered categories (C¼ 5) with four threshold values.
The four thresholds were chosen by trial and error so
that the frequencies of the five categories occuring in the
BC population have a ratio of 1:2:4:2:1. These threshold
values depend on the genetic effects of the simulated
QTL. The QTL effect was set at four levels, that is,
a¼ 0.2294, 0.3333, 0.5000, 0.8165, so that the correspond-
ing heritabilities at the four levels are h2¼ 0.05, 0.10, 0.20,
0.40, respectively. The simulated thresholds and the
genetic effects are given in Table 1. The sample size of the
BC population was n¼ 300. The simulation was repli-
cated 100 times so that we can compare the empirical
statistical powers, the mean estimated parameters and
the standard errors of the estimates for different levels of
the heritabilities. The critical values of the test statistic
used to declare statistical significance at the 5% experi-
ment-wise type I error rate were calculated from the
approximate method of Piepho (2001). The empirical
statistical power was calculated as the proportion of the
simulated samples among the 100 replicates with the
highest test statistical value along the genome greater
than the approximate critical value.
Logistical regression analysis was the only existing

method available for ordinal trait QTL mapping (Hackett
and Weller, 1995; Rao and Xu, 1998). For each simulated
sample, we also analyzed the data with the method of
Rao and Xu (1998), which was implemented via the
simplex algorithm (Nelder and Mead, 1965) for direct
maximization of the likelihood function. In order to
compare the estimated parameters of the logistic analysis
with the probit model proposed here, the estimated QTL
effect obtained from the logistic regression was multi-
plied by a constant

ffiffiffi
3

p
=p (Hackett and Weller, 1995).

Results of both analyses are given in Table 1. The
estimated parameters are close to the true values
simulated for both methods. However, the estimated
QTL effects and the threshold values from the logistic
regression are slightly biased downwards due to the
approximation of the constant factor

ffiffiffi
3

p
=p. The statistical

powers of the two methods are also comparable and both
follow the expected trend that larger QTL tends to have
a higher power to be detected. The estimated QTL
positions for both methods are slightly biased and with a
large estimation error when the QTL is small, which
follows the usual expectation of QTL mapping studies.

Effect of the number of categories on QTL mapping
In the second simulation experiment, we evaluated the
effect of the number of categories on the result of QTL
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mapping. The design of the simulation was similar to
that described in the first paragraph of the section of
simulation studies. We now set the QTL effect at
a¼ 0.3333 so that h2¼ 0.10. We simulated three levels
for the number of categories, 2, 5 and 8, corresponding to
1, 4 and 7 different threshold values (see Table 2 for the
simulated threshold values). The frequency ratios of
the categories in the three sets of simulations were 1:1,
1:2:4:2:1, and 1:2:3:4:4:3:2:1, respectively, for the three
sets of threshold values. The sample size for the
BC population was fixed at n¼ 200. The simula-
tions was replicated 100 times for each setting. The
results are given in Table 2, which shows that the number
of phenotypic categories does not have a dramatic
effect on the estimate of the QTL effect and position,
but it does affect the statistical power. Increasing
the number of categories tends to increase the statis-
tical power. This result may be explained by the fact
that increasing the number of categories has increased
the information of predicting the liability from the
observed categorical phenotype. If the number of
categories had been increased to infinity, we would
have observed the liability, and thus the power would
reach that of QTL mapping for continuous traits. In
reality, however, it is impossible to handle a large
number of categories because we may encounter a
problem of overparameterization due to the large
number of thresholds to be estimated. For a
large number of categories, the phenotype should be
treated as a continuous trait and analyzed using a
classical QTL mapping procedure.

Effect of the size of QTL on the result of QTL mapping
This simulation experiment intends to evaluate the effect
of QTL size on the result of QTL mapping under a

sample size of n¼ 200, which is typically used in QTL
mapping experiments. The parameters simulated in this
experiment are identical to those reported in the
paragraph under the title of ‘comparison with logistical
regression,’ except n¼ 200. The results are given in
Table 3. Again, a general trend of higher statistical power
for higher heritability was observed. In addition, the QTL
position is more precisely estimated for higher herit-
ability than for lower heritability.

Effect of phenotypic distribution on QTL mapping
In this simulation experiment, we investigated the effect
of the shape of phenotypic distribution on the result of
QTL mapping under a fixed sample size (n¼ 200), a
given number of categories (C¼ 5) and a given size of
QTL (a¼ 0.3333, that is, h2¼ 0.10). We choose the set of
threshold values by trial and error so that the phenotypic
frequency ratios of the five categories were 1:1:1:1:1 for
the first set (uniform distribution), 1:2:4:2:1 for the second
set (symmetrical and bell-shaped distribution) and
6:4:3:1:1 for the third set (highly skewed distribution).
The simulated threshold values as well as the estimated
parameters from 100 replicated simulations are given
in Table 4. We found that skewed distribution has
decreased the statistical power. The optimal power
occurred in the situation where the phenotypic distribu-
tion is bell-shaped.

Effect of sample size on QTL mapping
Finally, we investigate the effect of sample size on the
result of QTL mapping when the QTL size was fixed at
a¼ 0.3333 (h2¼ 0.10), the number of categories was C¼ 5
and the shape of the phenotypic distribution was
1:2:4:2:1. We evaluated four levels of sample sizes: 100,
200, 300 and 500. Results of 100 replicated simulations

Table 1 Comparison of the new method of QTL mapping with the logistic regression analysis

Heritability (h2) Parameter Estimation with the new method Estimation with the logistic regression

Name True value Mean STDa Power (%) Positionb Mean STDa Power (%) Positionb

0.05 Threshold t1 �1.3152 �1.3273 0.0954 74 28.77 (15.47) �1.2583 0.1028 74 28.28 (15.83)
t2 �0.5383 �0.5298 0.0697 �0.4765 0.0649
t3 0.5383 0.5478 0.0850 0.4933 0.0786
t4 1.3152 1.3329 0.1068 1.2639 0.1142

QTL effect 0.2294 0.2355 0.0707 0.2224 0.0688

0.10 Threshold t1 �1.3524 �1.3716 0.1105 97 25.34 (5.78) �1.3018 0.1139 96 25.23 (5.60)
t2 �0.5542 �0.5557 0.0812 �0.5044 0.0748
t3 0.5542 0.5555 0.0818 0.5052 0.0758
t4 1.3524 1.3699 0.1140 1.3015 0.1206

QTL effect 0.3333 0.3381 0.0694 0.3216 0.0668

0.20 Threshold t1 �1.4394 �1.4431 0.0958 100 25.14 (3.82) �1.3670 0.0979 100 25.29 (3.84)
t2 �0.5932 �0.5953 0.0842 �0.5513 0.0797
t3 0.5932 0.6121 0.0741 0.5672 0.0710
t4 1.4394 1.4590 0.0989 1.3851 0.1037

QTL effect 0.5000 0.5080 0.0646 0.4842 0.0648

0.40 Threshold t1 �1.6807 �1.6887 0.1112 100 25.04 (1.63) �1.6202 0.1100 100 25.07 (1.68)
t2 �0.7212 �0.7237 0.0913 �0.7115 0.0860
t3 0.7212 0.7411 0.0844 0.7272 0.0864
t4 1.6807 1.7180 0.1084 1.6414 0.1154

QTL effect 0.8165 0.8330 0.0719 0.8144 0.0783

aSTD stands for the standard deviation of the estimated parameters obtained from 100 replicated simulations.
bThe true QTL position is at 25 cM of the simulated chromosome. The standard deviations of the estimated QTL positions (obtained from 100
replicates) are given in parentheses.
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are summarized in Table 5. We did observe the expected
trend of the power increase as the sample size was
increased. The accuracy and precision were also in-
creased as the sample size was increased. Note that the
statistical power was 90% when the sample size was 200.
This situation has been simulated several times in the
previous subsections (Tables 2–4). The empirical statis-
tical powers ranged from 86 to 90%, which reflects
the stochastical error due to limited number of repli-
cates. The main purpose of the paper was to develop a
new method rather than to conduct exhaustive simula-
tions for comparison of statistical power in an exact
manner. Therefore, 100 replicates appear to suffice for

demonstrating the efficiency of the new method of QTL
mapping.

Discussion

We introduced the multicycle ECM algorithm for
mapping ordinal traits using a four-way cross model,
not because the four-way cross model is more common
than the simple line cross model (BC and F2) but because
the former is a general model which covers the simple
line crosses as special cases. Note that when we extend
the four-way crosses model to BC and F2 families, the
estimated genetic effects need to be rescaled in order to

Table 2 Mean and standard deviation (STD) of the estimated threshold values and QTL effect for various number of phenotypic categories
(C)

C Parameter Estimates

Name True value Mean STD Power (%) Position (cM)

2 Threshold t1 0.0000 0.0083 0.0986 77 24.96 (9.92)
QTL effect 0.3333 0.3547 0.0855

5 Threshold t1 �1.3524 �1.3603 0.1361 86 25.59 (6.96)
t2 �0.5542 �0.5578 0.0974
t3 0.5542 0.5578 0.1039
t4 1.3524 1.3689 0.1132

QTL effect 0.3333 0.3385 0.0712

8 Threshold t1 �1.7340 �1.7606 0.1593 91 24.71 (10.84)
t2 �1.0944 �1.1151 0.1176
t3 �0.5542 �0.5701 0.1055
t4 0.0000 0.0054 0.0935
t5 0.5542 0.5690 0.0994
t6 1.0944 1.0995 0.1075
t7 1.7340 1.7533 0.1778

QTL effect 0.3333 0.3450 0.0734

See the legends in Table 1.

Table 3 Mean and standard deviation (STD) of the estimated threshold values and QTL effect under various levels of QTL size

Heritability (h2) Parameter Estimates

Name True value Mean STD Power (%) Position (cM)

0.05 Threshold t1 �1.3152 �1.3155 0.1017 45 25.62 (15.10)
t2 �0.5383 �0.5393 0.0920
t3 0.5383 0.5379 0.0873
t4 1.3152 1.3349 0.1173

QTL effect 0.2294 0.2444 0.0776

0.10 Threshold t1 �1.3524 �1.3730 0.1312 89 25.38 (7.80)
t2 �0.5542 �0.5668 0.1089
t3 0.5542 0.5680 0.0963
t4 1.3524 1.3700 0.1290

QTL effect 0.3333 0.3530 0.0769

0.20 Threshold t1 �1.4394 �1.4512 0.1126 100 25.20 (3.67)
t2 �0.5932 �0.6007 0.0987
t3 0.5932 0.6029 0.1068
t4 1.4394 1.4712 0.1348

QTL effect 0.5000 0.5220 0.0744

0.40 Threshold t1 �1.6807 �1.6719 0.1471 100 24.66 (2.17)
t2 �0.7212 �0.7268 0.1133
t3 0.7212 0.7357 0.1144
t4 1.6807 1.7190 0.1466

QTL effect 0.8165 0.8235 0.0933

See legends in Table 1.
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be comparable with the results using the traditional
BC and F2 models. Recall that the design matrix for
the linear model in the four-way cross is denoted by
Zj¼ [Z1j Z2j Z3j] for the jth individual. The coefficient of
each genetic effect takes one of two possible values, 1
and �1, with an equal probability. Therefore, they all
have a zero expectation and a unity variance, and are
orthogonal to each other. When extended to the BC
family, Z2j and Z3j have vanished from the model. The
only coefficient left in the model is Z1j, which takes value
1 for a heterozygote and �1 for a homozygote. In the
traditional BC model, however, the coefficient is
defined as 1 for a heterozygote and 0 for a homozygote,

which leads to an expectation of 1/2 and a variance of
1/4. Therefore, when the traditional BC model is
compared with our extended BC model, we should
take into consideration the scale difference. The esti-
mated effect of the extended BC model would be half
the effect of the traditional BC model. When extended
to the F2 family, Z1j and Z2j have been combined
because am¼ af¼ a. Therefore, the coefficient of the
additive effect is Z1jþZ2j, with a zero expectation and
a variance of 2. This means that the coefficient of
the additive effect is defined as �2 for one homozygote,
0 for the heterozygote and 2 for the other homozygote.
In the traditional F2 model, however, the coefficient

Table 4 Mean and standard deviation (STD) of the estimated threshold values and QTL effect for various shapes of phenotypic distribution

Phenotypic distribution Parameter Estimates

Notation True value Mean STD Power (%) Position (cM)

Uniform (1:1:1:1:1) Threshold t1 �0.8890 �0.8831 0.1080 83 26.45 (8.67)
t2 �0.2678 �0.2579 0.0888
t3 0.2678 0.2799 0.0870
t4 0.8890 0.9086 0.1093

QTL effect 0.3333 0.3303 0.0791

Symmetrical distribution (1:2:4:2:1) Threshold t1 �1.3524 �1.3706 0.1266 90 26.26 (7.92)
t2 �0.5542 �0.5744 0..0906
t3 0.5542 0.5535 0.0923
t4 1.3524 1.3740 0.1310

QTL effect 0.3333 0.3470 0.0813

Skewed distribution (6:4:3:1:1) Threshold t1 �0.2678 �0.2766 0.0965 80 25.91 (8.54)
t2 0.4552 0.4593 0.0927
t3 1.1727 1.2000 0.1283
t4 1.5831 1.6222 0.1500

QTL effect 0.3333 0.3386 0.0918

See legends of Table 1.

Table 5 Mean and standard deviation (STD) of the estimated threshold values and QTL effect for various sample sizes (n)

Sample size Parameter Estimates

Name True value Mean STD Power (%) Position (cM)

100 Threshold t1 �1.3524 �1.4029 0.1972 50 29.38 (20.48)
t2 �0.5542 �0.5846 0.1433
t3 0.5542 0.5564 0.1325
t4 1.3524 1.4033 0.1764

QTL effect 0.3333 0.3630 0.1139

200 Threshold t1 �1.3524 �1.3732 0.1376 90 24.31 (7.32)
t2 �0.5542 �0.5636 0.0953
t3 0.5542 0.5654 0.0923
t4 1.3524 1.3794 0.1311

QTL effect 0.3333 0.3524 0.0819

300 Threshold t1 �1.3524 �1.3533 0.0941 98 25.67 (5.71)
t2 �0.5542 �0.5439 0.0784
t3 0.5542 0.5661 0.0844
t4 1.3524 1.3721 0.1097

QTL effect 0.3333 0.3443 0.0586

500 Threshold t1 �1.3524 �1.3712 0.0730 100 25.51 (3.65)
t2 �0.5542 �0.5525 0.0605
t3 0.5542 0.5622 0.0667
t4 1.3524 1.3695 0.0831

QTL effect 0.3333 0.3221 0.0480

See legends of Table 1.
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of the additive effect is defined as 0 for one homozygote,
1 for the heterozygote and 2 for the other homozygote.
In such a scale, the expectation of the additive coefficent
is 1 and the variance is 1/2. Therefore, when the
traditional F2 model is compared with our extended
F2 model, we should take into consideration the scale
difference. The estimated additive effect of the tradi-
tional F2 model would be twice the effect of the extended
F2 model. The coefficient of the dominance effect in the
extended F2 model is defined as 1 for the homozygote
and �1 for the heterozygote, whereas, in the traditional
F2 model, this coefficient is defined as 1 for the
heterozygote and 0 for the homozygote. Therefore, the
estimated dominance effect in the extended F2 model
should be half the effect of the traditional F2 model with
an opposite sign.

The ECM algorithm developed in this study depends
on the probit model rather than the logistic model
(Hackett and Weller, 1995; Rao and Xu, 1998). The probit
model uses a normal link function, which is more
natural than the logistic link function because the
residual error is assumed to be normally distributed
in the probit model. With the normal link function,
QTL effect is estimated in the original scale rather than in
a logit scale and then converted into the probit
scale using a constant

ffiffiffi
3

p
=p, which is an approximate

factor. The probit model serves as an alternative but
slightly better model than the logistic analysis because
of the normal distribution of the residual error. The
two models take different approaches, in that the
probit model simply tries to take advantage of existing
QTL mapping theory for regular quantitative traits
whereas the logistic regression tries to take advantage
of the simple form of the link function. The logistic
link function can be easily calculated without using
numerical integration, whereas the probit link function
may require numerical integration because there is
no closed form of the normal distribution function.
This disadvantage is less relevant as most modern
computer programs, such as SAS (SAS Institute, 1999),
can make use of a function to call the normal distribution
function and its reverse function. Binary data QTL
mapping is a special case of the ordinal data
QTL mapping where there are only two categories in
the phenotype. In binary trait QTL mapping, Rebai
(1997) and Kadarnideen et al (2000) compared the
threshold model with a simple regression analysis where
the binary phenotype, coded as 0 or 1, was simply
analyzed as if it were continuous. They showed that the
power loss in the simple regression analysis was almost
negligible compared with the threshold model. We
present the threshold model to give the users an
alternative but statistically more rigorous method for
ordinal data analysis. Users may choose either method
for their data analysis. If users prefer rapid results, then
simple regression is the choice; otherwise, the threshold
model implemented via the EM algorithm should be
choice, because the EM method is at least as efficient as
the regression method.

We have written a computer program implementing
the above data analyses. The program is written in SAS
8.2, called QTL-By-SAS, which runs on both the
Windows and Unix platform. The program codes and a
user manual can be downloaded from our website at
www.statgen.ucr.edu.
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