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Spatial autocorrelation methods have commonly been
applied to individual-based spatial genetic studies, although
their properties and the relations among the statistics have
not been carefully examined. This paper first introduces a
reformulation of widely used spatial statistics using point
processes. When Moran’s I statistics are applied to allele
frequencies within an individual, the frequencies are no
longer continuous variables but have only three discrete
values and specific interpretations of Moran’s I statistics and
the number of alleles in common (NAC) can be expressed as
the weighted sum of join-count statistics. The distributions of

minor genotypes are amplified in Moran’s I depending on the
allele frequency in the population, while NAC uses a constant
weighting system. Under the point process framework,
spatial analysis can be conducted on the common theoretical
base, from individual locations to genetic distributions of
different levels, (for example, genotype and allele). The
methodology is demonstrated by application to field data for
molecular ecological studies of Fagus crenata population
dynamics.
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Introduction

Spatial autocorrelation analysis is currently used as a
standard statistical technique for analysing individual-
based spatial genetic structure from mapped data of
genotyped individuals. The commonly used methods
can be classified into two categories depending on the
treatment of the genotypic data (Heywood, 1991). One
method considers genotypes as nominal data and applies
join-count statistics (ie, standard normal deviate, SND).
The other, first transforms genotypic data into allele
frequencies and applies Moran’s I statistics to interval
data. With this method, each individual is considered as
a population, thus, its allele frequency is 1 if it
homozygous for a specific allele, 0.5 if heterozygous,
and 0 otherwise. Some studies have used the latter
method (eg, Xie and Knowles, 1991; Geburek and Tripp-
Knowles, 1994; Streiff et al, 1998; Ueno et al, 2000), others
have used both (eg, Leonardi and Menozzi, 1996; Chung
and Epperson, 2000), and some have calculated addi-
tional statistics, such as the number of alleles in common
(NAC; Berg and Hamrick, 1995; Takahashi et al, 2000)
and coancestry (Loisselle et al, 1995). In each case, pairs
of individuals are classified into distance classes and
statistics are calculated for every distance class.

Join-count statistics for short distance classes directly
indicate whether a specific genotype is clustered and
whether two genotypes are attracting or repulsing. In
contrast, large positive Moran’s I values for short

distance classes are generally interpreted as a tendency
for neighbouring individuals to have a ‘similar’ allele
frequency. When Sokal and Oden (1978) introduced
spatial autocorrelation methods, Moran’s I statistics were
calculated for the allele frequencies of populations
investigated. In this case, the allele frequencies are
continuous variables, thus a general interpretation of
correlations is feasible; positive correlations are present
when the two variables tend to show similar values.
However, at the individual level, the frequency can no
longer be continuous but takes three discrete values.
In previous studies, when both Moran’s I and join-

count (and other spatial statistics) were calculated, the
two statistics were not simultaneously interpreted.
Although Epperson (1995) pointed out that Moran’s I is
a weighted sum of join-count statistics, no study has
directly applied this relations to field data. In addition,
some studies analysed the spatial distribution of in-
dividuals, although separately from genotypic distribu-
tion (eg, Berg and Hamrick, 1995; Ueno et al, 2000).
This paper introduces a methodology that uses join-

count statistics, Moran’s I statistics for within-individual
frequencies, and other spatial statistics together with the
spatial distribution of individuals. Beginning with a brief
review of conventional spatial autocorrelation methods
in genetics, the first part explains point processes, which
have been commonly applied in individual-based spatial
ecology and play an important role in simultaneous
analysis of the spatial distribution of individuals and
genotypes. The next part reformulates conventional
spatial statistics using the language of point processes
(Shimatani, 2002). The reformulated Moran’s I for with-
in-individual frequencies and NAC can be expressed as
the weighted sum of the reformulated join-countReceived 31 May 2002; accepted 25 February 2003
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statistics, thus providing an insight into the inter-
pretation of autocorrelations between the three discrete
values and clarifying the relation between the measures.
The methodology is demonstrated by application to
field data of a Fagus crenata population taken from
Takahashi et al (2000). The final part discusses the
biological implications of the analysis and the utility of
the methods for population genetics and molecular
ecology.

Spatial statistics

Conventional statistics for genetics
Suppose that the mapped data of genotyped individuals
are given. Let {Xi} (i¼ 1, 2,y, n) be the x–y coordinates of
individual i. Conventionally, spatial autocorrelation
techniques are applied as follows. First, Euclidean
distances are calculated between the individuals and
divided into distance classes of width 2D as (0, 2D], (2D,
4D], (4D, 6D], y . For each pair of individuals (i, j),
weight Wi,j[r] is given for discrete distances of r¼D, 3D,
5D, y depending on their interdistance jjXi�Xjjj as

Wi;j½r� ¼
1 if r � DojjXi � Xjjj � r þ D
0 otherwise

�
ð1Þ

(1) Moran’s I statistics for within-individual frequencies: Fix
one locus and one allele, named A. Let a(i) be the allele
frequency within individual i, namely, a(i)¼ 1 if indivi-
dual i is homozygous for allele A, a(i)¼ 0.5 if hetero-
zygous for A, and a(i)¼ 0 otherwise. Let �aa be the
(estimated) frequency of allele A in the given population.
For each distance class (r�D, r+D], Moran’s I statistics
(Cliff and Ord, 1981; Sokal and Oden, 1978) are applied
to the frequency of allele A within an individual as

IA½r� ¼
P

n
i;j¼1Wi;j½r�ðaðiÞ � �aaÞðaðjÞ � �aaÞ

V
P

n
i;j¼1Wi;j½r�

ð2Þ

where V is the variance of a(i):

V ¼
X

n
i¼1ðaðiÞ � �aaÞ2=n

(2) Coancestry: Using the same notations as above, some
recent studies used the following equation called coan-
cestry (with respect to allele A) (Loisselle et al, 1995):

rA½r� ¼
P

n
i;j¼1Wi;j½r�ðaðiÞ � �aaÞðaðjÞ � �aaÞ
�aað1� �aaÞ

P
n
i;j¼1Wi;j½r�

ð3Þ

If a population is Hardy-Weinberg equilibrium

V ¼ �aa2ð1� �aaÞ2 þ 2�aað1� �aaÞð0:5� �aaÞ2 þ ð1� �aaÞ2ð0� �aaÞ2
¼ �aað1� �aaÞ=2

then, rA(r)¼ IA(r)/2.
(3) NAC: Let nac(i, j) be the average number of alleles in
common over the loci considered between individuals i
and j (Surles et al, 1990). This genetic similarity index can
be extended to spatial statistics as (Berg and Hamrick,
1995)

NAC½r� ¼
P

n
i;j¼1Wi;j½r� 
 nacði; jÞP

n
i;j¼1Wi;j½r�

ð4Þ

(4) Join. count statistics: Fix one locus and let m(i) be the
genotype of individual i. Classify individuals by their
genotypes of that locus, such as AA, AB, BB, AC, BC, y
and define join-count statistics, for example, with

respect to AA-AA, AA-AB as

JAA�AA½r� ¼
X

mðiÞ¼AA;mðjÞ¼AA

Wi;j½r� ð5aÞ

JAA�AB½r� ¼
X

ðmðiÞ¼AA;mðjÞ¼ABÞ or ðmðjÞ¼AA;mðiÞ¼ABÞ
Wi;j½r� ð5bÞ

These are equal to the observed number of joins with
specific genotype(s) (in biallelic cases, there are an
additional four statistics denoted as JAA-BB[r], JAB-AB[r],
JAB-BB[r], JBB-BB[r]). Subtracting the expected number of
joins under the random distribution and dividing it by
the square root of the variance, we obtain SND which
approximately follow the normal distribution.

For any of these statistics, ploting values at r¼D, 3D,
5D, y, produces a correlogram, illustrating fine-scale
spatial genetic structure.

Point processes
A point process is a stochastic system that places points
in the plane. If points are classified into several types, the
system is called a multivariate point process. If each
point has a mark (generally, a real number or a set of real
numbers), the system is called a marked point process. In
this paper, a point corresponds to an individual (tree), a
type to the genotype, and a mark to its allele frequency
within an individual or multilocus genotype. The details
and brief introduction to terminology below are taken
from Stoyan and Stoyan (1994), and Stoyan and
Penttinen (2000), respectively.

Let l be the density; the mean number of individuals
per unit area. The product density, J(r), is the probability
density that there are individuals at two arbitrarily
chosen points with interdistance r. If individuals are
randomly distributed, the probability that an individual
exists at each point is independently equal to l, thus,
J(r)/l2. The normalised product density, g(r)¼ J(r)/l2, is
called the pair correlation function. g(r) 41 (or J(r)4l2) for
relatively small r means that the interdistance r is more
frequent than a random point pattern, thus, there is
clustering of individuals.

When individuals are classified into K types, K(K+1)/2
product densities {Jk,l(r)} (1rkrlrK) can be considered;
they express the probability density that there are type k
and type l individuals at two arbitrarily chosen points of
interdistance r (Jk,l(r) does not specify which type exists
at which point). Let their normalised versions be denoted
as gk,k(r)¼ Jk,k(r)/lk

2 and gk,l(r)¼ Jk,l(r)/2lkll, where lk refers
to the density of type k individuals.

If each individual has a mark, let M denote the set of
marks, and m(i) the mark of individual i. Let f(m1, m2) be a
function on M�M. For two arbitrarily chosen points with
interdistance r, define a random variable that vanishes if
there is no individual at one of the points and is equal to
f(m(i), m(j)) if individuals i and j exist. Let Jf(r) be the
expected value of this random variable and define

gfðrÞ ¼ JfðrÞ=JðrÞ ð6Þ
gf(r) can be interpreted as the conditional mean of f(m(i),
m(j)) given that jjXi � Xjjj ¼ r.

Suppose that we have a complete map of individuals
with types or marks in a rectangular sampling plot with
side lengths a and b (aob). Denote the data by {Xi, m(i)}
{i¼ 1, 2, y, n}, where m(i) refers to the type or mark. g(r),
gk,k(r), gk,l(r), and gf(r) can be estimated as follows
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(Penttinen et al, 1992; Stoyan and Stoyan, 1994, pp 284–
293).

ĝgðrÞ ¼
X
i 6¼j

wðjjXi � Xjjj � rÞ
l̂l22prsðrÞ

ð7Þ

ĝgk;kðrÞ ¼
X

mðiÞ¼mðjÞ¼k

wðjjXi � Xjjj � rÞ
l̂l2k2prsðrÞ

ð8Þ

ĝgk;lðrÞ ¼
X

mðiÞ¼k
mðjÞ¼l

wðjjXi � Xjjj � rÞ
2l̂lkl̂ll2prsðrÞ

ð9Þ

ĝgfðrÞ ¼
P

i 6¼jwðjjXi � Xjjj � rÞfðmðXiÞ;mðXjÞÞP
i 6¼jwðjjXi � Xjjj � rÞ ð10Þ

Here, roa, l̂l ¼ n=ab is the estimated density, l̂lk is the
estimated density of type k individuals,

wðzÞ ¼ 3=4dð1� z2=d2Þ if jzjod
0 otherwise

�
ð11Þ

is the Epanechnikov kernel in which d is an arbitrarily
fixed constant, and sðrÞ ¼ ab � rð2a þ 2b � rÞ=p is the
edge correction factor. Generally, an estimator includes
an edge correction. An exception is gf(r) (equation (10)) in
which the edge corrections in the numerator and the
denominator cancel each other. The majority of ecologi-
cal studies use Riplay’s edge correction (Hasse, 1995), but
the edge correction factors do not cancel and ĝgfðrÞ must
be calculated by a more complicated equation.

Reformulation of statistics
Shimatani (2002) reformulated the spatial statistics
(eqations (2)–(5)) in the language of the point process.
Using a(i) as a mark and f(m1, m2)¼ (m1��aa)(m2��aa)/V and
f(m1, m2)¼ (m1��aa)(m2��aa)/�aa (1��aa) as a function in
equation (6), we obtain the reformulated Moran’s I
statistics for within-individual frequencies and the
coancestry, respectively. Substituting these functions into
(10), we obtain their estimators as

ÎIAðrÞ ¼
P

i 6¼jwðr � jjXi � XjjjÞðaðiÞ � �aaÞðaðjÞ � �aaÞ
V̂V
P

i 6¼jwðr � jjXi � XjjjÞ
ð12Þ

r̂rAðrÞ ¼
P

i 6¼jwðr � jjXi � XjjjÞðaðiÞ � �aaÞðaðjÞ � �aaÞ
�aað1� �aaÞ

P
i 6¼jwðr � jjXi � XjjjÞ

ð13Þ

where V̂V ¼
P

n
i¼1ðaðiÞ � �aaÞ2=ðn � 1Þ is the unbiased esti-

mator of the variance of a(i).
In the same way, let the mark set be (multilocus)

genotypes and let the function be nac(i, j). It induces the
reformulated NAC, and its estimator is given as

NÂACðrÞ ¼
P

i6¼jwðr � jjXi � XjjjÞnacði; jÞP
i 6¼jwðr � jjXi � XjjjÞ

ð14Þ

equations (12)–(14) express the expected values of
ðaðiÞ � �aaÞðaðjÞ � �aaÞ=V, ðaðiÞ � �aaÞðaðjÞ � �aaÞ=�aað1� �aaÞ, and
nac(i, j), respectively, given that jjXi � Xjjj ¼ r:
Classifying individuals by the single-locus genotype,

the estimators of product densities, ĴJk;lðrÞ, which corre-
spond to join-count statistics, are given as

ĴJAA�AAðrÞ ¼
X

mðiÞ¼AA;mðjÞ¼AA

wðr � jjXi �XjjjÞ=sðrÞ2pr

ð15aÞ

ĴJAA�ABðrÞ¼
X

fmðiÞ¼AA;mðjÞ¼ABg or fmðiÞ¼AB;mðjÞ¼AAg
wðr�jjXi�XjjjÞ=sðrÞ2pr

ð15bÞ
which express the probability density that there are
individuals of genotype AA-AA, and AA-AB, y at two
points of interdistance r, respectively.
Conventional spatial autocorrelation methods and

marked point processes have different mathematical back-
grounds. When Sokal and Oden (1978) first introduced the
former into population genetics, each population was
considered as a lattice point, a set of populations formed
an irregular lattice, and Moran’s I statistics were calculated
for allele frequencies of the populations. Later, the method
was modified to be applicable to individual-based studies,
in which an individual is treated as a population. Using this
approach, individual locations are fixed and statistical
analysis is primarily conducted to test whether the spatial
genetic distribution on the given locations significantly
differs from the random pattern. On the other hand,
marked point processes investigate the spatial distribution
of marked points. This approach assumes that genotyped
individuals are distributed throughout a plane according to
some stochastic system and equations (7)–(10) estimate
functions associated with the hidden process from samples
[thus, the unbiased estimator should be used in the variance
term in equation (12)]. Hence, the point process contains
potential for constructing stochastic models that can
simultaneously explain individual locations and their
genotypes (Shimatani, 2002).
Despite the differences in their mathematical back-

ground, in practice, the reformulated expressions (equa-
tions (12)–(15)) can be derived simply by replacing Wij[r]
with w(r�jjXi�Xjjj) in equations (2)–(4). Hence, both
equations exhibit a similar correlogram and a graph
(Shimatani, 2002). Figures 1a and b compare IA[r] and
ÎIAðrÞ for a Fagus crenata population (data from Takahashi
et al (2000), Figure 2). The conventional statistics use a
weight of either 1 or 0, whether the interdistance exactly
falls into (r-D, r+D], while in the point processes, weights
are gradually decreased when interdistances diverge
from r, and are fixed to 0 if it falls outside r7d. The latter
approach enables us to calculate the values for any
distance and draw a smooth curve illustrating spatial
genetic patterns, more elegantly than the broken line of a
correlogram. In addition, it is no longer necessary to fix
arbitrarily the width 2D of the distance class; occasion-
ally, a slight change of D dramatically affects the
statistics, especially for the first distance class. In
contrast, although the point process formulation requires
arbitrary fixation of the width d of the kernel function
(equation (11)), it works at most on smoothing the curve
(Stoyan and Stoyan, 1994, pp 284–290, see also Figure 1a).

Weighted-sum expressions
Because mark a(i) takes only three discrete values, ÎIAðrÞ
and r̂rAðrÞ can be reformulated under multivariate point
processes. Fix a locus and an allele, pack all the alleles
other than the fixed A into one group, and denote it by *.
Index genotypes AA, A*, ** as 1, 2, 3. ÎIAðrÞ(and r̂rAðrÞ) can
be expressed as the weighted sum of {̂JJK�LðrÞ=ĴJðrÞ}
(1rKrLr3) as in (Shimatani, 2002):

ÎIAðrÞ ¼
X

1�K�L�3

SKLĴJK�LðrÞ=ĴJðrÞ ð16Þ
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where SKL denotes the K-L component of the matrix

S¼ 1

V̂V



ð1��aaÞ2 ð1��aaÞð0:5� �aaÞ ð1��aaÞð0� �aaÞ
ð0:5��aaÞ2 ð0:5��aaÞð0��aaÞ

ð0��aaÞ2

0
B@

1
CA

ð17Þ
(This relation was first pointed out in Epperson (1995) for
the conventional Moran’s I for within-individual fre-

quencies (equation (2)) and join-count statistics (equation
(5)). Replacing V̂V with �aað1� �aaÞ involves the weighted-
sum expression of r̂rAðrÞ. Note that ĴJK�LðrÞ=ĴJðrÞ does not
contain the edge correction factors.

If one biallelic locus is considered, NÂACðrÞ can be
written in the same form:

NÂACðrÞ ¼
X

1�K�L�3

TKLĴJK�LðrÞ=ĴJðrÞ ð18Þ

where

ðTKLÞ ¼
2 1 0

2 1
2

0
@

1
A ð19Þ

Even when the locus has more than two alleles, if the
minor alleles have sufficiently small frequencies,
NÂACðrÞof that locus can be approximated by this biallelic
form. Although ÎIAðrÞ and NÂACðrÞ have the same form
except for the weighting system, the weight matrix S of
ÎIAðrÞ is a variable of allele frequency �aa in the population,
whereas NÂACðrÞ uses a constant matrix. If the population is
at the Hardy–Weinberg equilibrium, V¼�aa (1–�aa)/V2, thus

S¼2 

ð1��aaÞ=�aa ð0:5��aaÞ=�aa �1

ð0:5��aaÞ2=�aað1��aaÞ �ð0:5��aaÞ=ð1��aaÞ
�aa=ð1��aaÞ

0
B@

1
CA

Hence, S¼S(�aa) varies depending on the allele frequency �aa,
for example, as:

Sð0:7Þ ¼
0:86 �0:57 �2

0:38 1:33

4:67

0
B@

1
CA;

Sð0:5Þ ¼
2 0 �2

0 0

2

0
B@

1
CA;

Sð0:3Þ ¼
4:67 1:33 �2

0:38 �0:57

0:86

0
B@

1
CA

Hence, for the spatial autocorrelation of the three discrete
variables, positive values are obtained when: (1) both
genotypes (frequencies) are identical or (2) one is a
heterozygote (A*) and the other is a homozygote (AA) if
�aao0.5 or **-type if �aa40.5. Unlike the general cases in
which positive correlations appear when two variables
tend to have similar values, the autocorrelation of the three
discrete variables involves more concrete and specific
interpretation.

As the allele frequency deviates from 0.5, more
variation appears between the six weights, for instance,

Sð0:9Þ ¼
0:22 �0:89 �2

3:56 8

18

0
B@

1
CA;

Sð0:95Þ ¼
0:11 �0:95 �2

8:53 18

38

0
B@

1
CA;

Sð0:99Þ ¼
0:02 �0:99 �2

48:51 98

198

0
B@

1
CA
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Figure 1 (a) and (b) The dashed lines indicate the correlograms of
the conventional Moran’s I statistics for within-individual frequen-
cies (equation (2), D¼ 2.5m) and the solid lines show the graphs of
the point process functions [equations (12), (16) and (17), d¼ 1, 2,
4m in (a) and d¼ 2m in (b)] for F. crenata population AK from
Takahashi et al (2000) for: (a) Mdh-3 and (b) Aap-1. (c) Single locus
NÂACðrÞ calculated by the biallelic approximation (equations (18)
and (19), d¼ 2m) for Mdh-3 (—�—) and Aap-1 (—&—).
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ÎIAðrÞ (and coancestry r̂rAðrÞ) provides 38/0.11¼ 345 times
greater weight with **–** joins than AA–AA joins if
�aa¼ 95%, and 198/0.02¼ 9801 times greater if �aa¼ 99%,
meaning that ÎIAðrÞ and r̂rAðrÞ intensify the information on
minor genotype(s). This contrasts with NAC, which
always considers AA–AA as similar as AB–AB and BB–
BB.

Instead of f(m1, m2)¼ (m1��aa)(m2��aa)/V, if product f(m1,
m2)¼m1m2 is used, the resulting function gm1m2ðrÞ
normalised by the square of the mean of marks is called
the mark correlation function (Stoyan and Stoyan, 1994, pp
291–293; Stoyan and Peenttinen, 2000). This function has
frequently been used in ecology where the mark refers to
the sizes of trees (eg, Penttinen et al, 1992). If the discrete
mark a(i) above is used, gm1m2ðrÞ=�aa2 can be estimated in
the form:

ĝgm1m2
ðrÞ=�aa2 ¼ 1=�aa2 


X
1�K�L�3

UKLĴJK�LðrÞ=ĴJðrÞ ð20Þ

where

ðUKLÞ ¼
1 0:5 0

0:25 0
0

0
@

1
A ð21Þ

This function is easier to interpret than ÎIAðrÞ, and directly
indicates whether allele A is clustering. Namely,
gm1m2ðrÞ=�aa2 � 1 if allele A is randomly distributed.
ĝgm1m2

ðrÞ=�aa2o1 for small r suggests that the neighbouring
individuals tend to be AA homozygotes (or A* hetero-
zygotes if �aao0.5), while ĝgm1m2

ðrÞ=�aa241 indicates that the
neighbouring individuals tend not to share this allele. In
contrast, Moran’s I takes a product of ðaðiÞ � �aaÞðaðjÞ � �aaÞ,
thus, ÎIAðrÞ40 suggests either or both, and cannot
distinguish between the two cases. However, matrix U
(equation (21)) includes three zero components, meaning
that this measure ignores half of the spatial information.

The effects of the different weighting systems are
demonstrated below.

Field data
The above methodology is demonstrated by field data of
Fagus crenata (population AK) from Takahashi et al
(2000). Fagus crenata is widely distributed in cool
temperate forest in Japan, especially in areas with
abundant snowfall. This species is wind-pollinated,
self-incompatible and has limited seed dispersal. The
study site was once old-growth forest dominated by F.
crenata, harvested approximately 80 years ago preserving
some seed trees, then, naturally regenerated. The stand is
currently covered with secondary F. crenata forest.
Takahashi et al (2000) genotyped 486 individuals in the
0.77 ha plot for nine isozyme loci. This paper primarily
uses the genetic data of two loci; Mdh-3 (EC 1.1.1.37) and
Aap-1 (EC 3.4.11.2) (Figure 2). The details of the data are
described in Takahashi et al (2000).

Application to field data

Figure 1 illustrates the reformulated Moran’s I statistics
for within-individual frequencies (̂IIðrÞ, equations (12),
(16) and (17)) with respect to allele b (frequency¼ 0.80) of
Mdh-3 and allele b (frequency¼ 0.94) of Aap-1, and
(single-locus) NÂACðrÞ of each locus for the Fagus crenata
population. The biallelic approximation (equations (18)
and (19)) was used for NÂACðrÞ because the third alleles
have frequencies of only 0.2–0.3%.
For the Mdh-3 locus, the monotonically decreasing ÎIbðrÞ

suggests spatial genetic structure whereas NÂACðrÞ shows
no clear tendency. For Aap-1, both ÎIbðrÞ and NÂACðrÞ
indicate a trend of decreasing up to 10m but ÎIbðrÞ takes
its maximum at 4m. The application of equations (16)-
(21) leads us to examine as to what caused the
differences between the two functions and between the
two loci, and reveals details of the spatial genetic
patterns.
Figure 3 illustrates the six product density functions

fĴJK�LðrÞg (1rKrLr3) (equation (15)). Dividing ĴJK�IðrÞ
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Figure 2 Distribution of Aap-1 genotypes in F. crenata individuals in population AK from Takahashi et al (2000).
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by their sum (¼ ĴJðrÞ), the conditional probabilities that a
randomly selected pair have genotypes K and L, given
that their interdistance is r, are obtained (Figure 4).
Multiplying ĴJK�LðrÞ=ĴJðrÞ by weight

SMdh�3 ¼
0:48 �0:73 �1:94

1:10 2:93
7:81

0
@

1
A or

SAap�1 ¼
0:1 �0:76 �1:62

5:79 12:33
26:29

0
@

1
A

involves the six curves and their sum is equal to ÎIbðrÞ
(Figure 5). Changing the weight matrix to T (equation
(19)), another six curves are obtained whose sum is
NÂACðrÞ (Figure 6).

Mdh-3
There appear to be a great number of bb–bb and bb–b*
joins for short distances but not as many for long
distances (Figure 3a). This is largely because of the
clustering of trees themselves rather than the clustering
of genotypes on the trees. In fact, compared with the long
interdistances, the ratios ĴJbb�bbðrÞ=ĴJðrÞ and ĴJbb�b�ðrÞ=ĴJðrÞ
are smaller for short distances (Figure 4a); instead, ratios
for b*–b*, b*–**, and **–** are greater for short distances
than for long distances. This means that arbitrarily
chosen neighbouring trees are expected to be bb–bb or
bb–b* because allele b is in the majority, that the

probabilities of selecting b*–b*, b*–**, or **–** are small
because these genotypes are in the minority, and that
minor genotypes are chosen more frequently for neigh-
bouring pairs than separated pairs.

When the six percentage functions ĴJK�LðrÞ=ĴJðrÞ are
multiplied by matrix SMdh-3, components b*–b*, b*–**, and
**–** are amplified; 1.10/0.48–7.81/0.48 E2–16 times
more than bb–bb, and their tendencies of monotonic
decrease become apparent, resulting in the monotoni-
cally decreasing ÎIbðrÞ (Figure 5a). On the other hand,
NÂACðrÞ uses the matrix consisting of only {0, 1, 2}
(equation (19)). All the curves stay almost constant, and
NÂACðrÞ reveals no clear spatial structure for Mdh-3
(Figure 6). The mark correlation function (Figure 7) also
suggests that minor allele c is clustering while major
allele b is not. ÎIbðrÞ intensified the former characteristics,
visualizing the spatial structure in the Mdh-3 locus, while
NÂACðrÞ with no amplification does not express this
pattern.

Aap-1
The allele frequency is highly biased to the major allele b.
This involves large ĴJbb�bbðrÞ and ĴJbb�b�ðrÞ, while the other
four nearly overlap the horizontal axis (Figure 3b).
Taking their percentages, Figure 4b shows that up to
10m, ĴJbb�bbðrÞ=ĴJðrÞ monotonically decreases while
ĴJbb�b�ðrÞ=ĴJðrÞ monotonically increases. NÂACðrÞ reflects
only the two major curves, resulting in the clear spatial
structure up to 10m (Figure 1c). On the contrary, ÎIbðrÞ
(Figure 1b) indicates the strongest spatial structure at
4m. This contrasting result was caused by the spatial
pattern of **–trees; although there is a sharp peak at 4m,
it has not become visible until the weight matrix SAap-1
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Figure 3 The six-product density functions fĴJK�LðrÞg(1rKrLr3,
d¼ 2m) of the F. crenata population for: (a) Mdh-3 and (b) Aap-1.
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intensified **–** joins 26.29/0.1¼ 263 times more than
bb–bb joins (Figure 5b).

In summary, NÂACðrÞ and ÎIbðrÞ involve similar decreas-
ing graphs, especially if calculated by 5 m distance
classes because it averaged 0-5m and the peak at 4m has
disappeared (Figure 1b). However, the former is mostly
because of the spatial pattern of the major allele whereas in
the latter, the minor alleles make a greater contribution.

Discussion

Individual-based spatial genetic studies have applied
Moran’s I statistics for interval data to three discrete
variables, which can be written as a weighted sum of the
six joint-count statistics (Epperson, 1995). There have
been two evaluations of the utility of this statistics and
two directions in developing spatial statistics. Epperson
(1995) suggested classifying individuals by their geno-
types and applying full joint-count statistics to ensure the
high resolution of spatial data. In contrast, Smouse and
Peakall (1999) aimed to develope a statistic that
summarizes spatial patterns and has as much statistical
power as possible for testing the randomness of genetic
patterns. Because full join-count statistics reflect the
original genotypic information, they can reveal various
characteristics of spatial pattern, whereas information
loss is inevitable for summarized statistics. On the
contrary, even the summarized autocorrelations tend to
be sensitive to stochastic variance (Slatkin and Arter,
1991), and join-count statistics, which must be calculated
from smaller sample sizes than their weighted sum,
should be more vulnerable to stochastic effects. The two
approaches have contrasting advantages and disadvan-
tages. However, they can complement each other if
summarised statistics can be decomposed into compo-
nents. In fact, the statistics introduced in Smouse and
Peakall (1999) are defined for multilocus genotypes as
well as decomposable into loci and alleles, therefore, one
can check which allele/locus largely contribute to the
summarised statistics and which have little influence.
This paper has extended this approach and shown that
by changing the values of the weighting matrix, both
Moran’s I for within-individual frequencies and NAC are
decomposable into join-count statistics. Hence, under the
spatial analysis proposed here, join-count statistics
(simplified by packing the other alleles into type *) are
used to examine the roles of each genotype in the
summarized statistics, and thus play relatively comple-
mentary roles, which differs from the method suggested
in Epperson (1995) in which many join-count statistics
should play a central role. Instead, we may accumula-
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Figure 5 The decomposition of ÎIbðrÞ into the six components
(equations (16) and (17)) for: (a) Mdh-3 and (b) Aap-1 in a F. crenata
population.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60
distance (m)

w
ei

gh
te

d 
pr

od
uc

t d
en

si
ty

 a
nd

 r
ef

or
m

ul
at

ed
 N

A
C

bb-bb bb-b*
bb-** b*-b*
b*-**
NAC(r)

**-**

Figure 6 The decomposition of NÂACðrÞcalculated by the biallelic
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tively analyse spatial genetic patterns from the genotypic
level to the allele level, and possibly to the single-locus
and multilocus level, and examine their relations in the
hierarchy.

Some previous studies have separately analysed
individual distribution and genes by Ripley’s K-function
of point processes (Berg and Hamrick, 1995) or Mor-
ishita’s index of dispersion (Id) (Ueno et al, 2000), and by
spatial autocorrelation based on the lattice theory,
respectively. The introduction of point processes involves
fundamental conceptual changes. First, all of the spatial
analyses are established on a common theoretical base,
from the spatial distribution of individual trees to the
spatial distribution of genetic variation, at different levels
indicated above. More importantly, the lattice theory
fixes individual locations whereas the point process
treats them as random variables, and the goal is no
longer to test the spatial randomness but includes the
construction of stochastic models that can simulta-
neously explain individual distributions and their
genotypes (Shimatani, 2002). It is currently quite com-
mon for ecologists to use genetic markers as tools for
ecological studies, called molecular ecology. The marked
point process provides appropriate analytical tools when
we examine populations for ecological purposes such as
forest dynamics, by means of genetic markers, which
may involve new insights into population genetics.

Takahashi et al (2000) suggested that the presence of
the spatial genetic structure represented by Moran’s I
statistics is a result of regeneration from limited seed
trees because then offspring surrounding the mother
tend to share alleles inherited from the mother. More-
over, applying point process models in which the genetic
structure was represented by the average of the
reformulated Moran’s I statistics, Shimatani (2002)
quantitatively estimated the number of seed trees as
moderately limited (eg, 35 trees/ha) rather than very
limited (eg, 10 trees/ha), suggesting advance reproduc-
tion of harvested adults. Takahashi et al (2000) also illus-
trated a map of genotypic distribution for the Pgi-1 locus
in which a preserved tree with a minor allele d is
surrounded by young trees with this allele (this observa-
tion can be quantitatively assessed by the application of
the decomposition analysis introduced here to the Pgi-1
locus, which actually indicated the clustering of hetero-
zygotes c*, mostly cd). This paper also shows the clustering
of minor alleles for Mdh-3 and Aap-1 (in fact, seven cc-trees
are clumped into two patches, see Figure 2).

Spatial patterns of minor alleles reflect the founder effect:
regeneration from a limited number of seed trees. For the
above three loci, ÎIAðrÞ’s property of intensifying minor
allele’ information worked appropriately. On the contrary,
the Dia-1 locus has four alleles, and twominor alleles, a and
c, are separately distributed in the plot. In such cases,
because ÎIAðrÞ specifies one allele and packs all the others
together, ÎIAðrÞ for any allele cannot effectively illustrate the
spatial pattern at the locus while NÂACðrÞ may. The
advantages and disadvantages of each function should be
extensively examined to characterize spatial patterns more
adequately and to construct stochastic models.

In conclusion, spatial analysis for mapped, genotyped
individuals should not rely on one statistic and the
simultaneous use of several point process functions is
recommended. If the locus is close to biallelic, the above
demonstration suggests fixing an allele with sufficient

frequency, packing all the other alleles into one group,
calculating the six product density functions, providing
weights depending upon the function, drawing their
curves, and then examining the spatial genetic pattern.
The comprehensive application of point process func-
tions provides analytical tools for spatial data of
genotyped individuals with population genetics and
molecular ecology.
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