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The additive genetic variance, VA, is frequently used as a
measure of evolutionary potential in natural plant popula-
tions. Many plants inbreed to some extent; a notable
observation given that random mating is essential to the
model that predicts evolutionary change from VA. With
inbreeding, VA is not the only relevant component of genetic
variation. Several nonadditive components emerge from the
combined effects of inbreeding and genetic dominance. An
important empirical question is whether these components
are quantitatively significant. We use maximum likelihood

estimation to extract estimates for VA and the nonadditive
‘inbreeding components’ from an experimental study of the
wildflower Mimulus guttatus. The inbreeding components
contribute significantly to four of five floral traits, including
several measures of flower size and stigma–anther separa-
tion. These results indicate that inbreeding will substantially
alter the evolutionary response to natural selection on floral
characters.
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Introduction

The additive variance, VA, is the principal statistic of
quantitative genetics. While no single quantity can fully
describe the complexities of multi-locus inheritance, VA

is a remarkable abstraction. It is a primary determinant
of the resemblance of relatives and also provides a
measure of the capacity for a trait to evolve in response
to selection. Estimates of VA can be used to predict
evolutionary change quantitatively (eg Clayton et al,
1957; Grant and Grant, 1995) or, more frequently, as
measures of the evolutionary potential in a given trait.
Random mating is critical to these applications (Mitchell-
Olds and Rutledge, 1986; Wright, 1987; Kelly, 1999a). If a
population does not mate randomly, particularly if it
inbreeds to some extent, the sufficiency of VA as a
measure of evolutionary potential is subject to question.

With random mating, the genetic variance of a
quantitative character can be decomposed into three
components (Falconer, 1989): the additive variance, the
dominance variance (VD), and the interaction or epistatic
variance (VI). There are hundreds of estimates of VA for
morphological, physiological, behavioral, and life history
traits within a broad range of organisms (Mousseau
and Roff, 1987). In contrast, VD and VI are frequently
neglected in empirical studies. In part, this is because of
difficulties associated with their estimation (Bridges and
Knapp, 1987; Fenster et al, 1997). However, the scarcity
of estimates probably also reflects a perception that non-
additive components are irrelevant to the evolutionary
process (Wade, 1992; Brodie, 2000).

Nonadditive components make a demonstrable con-
tribution to evolutionary change in inbreeding popula-
tions (Pederson, 1969; Cockerham and Matzinger, 1985).
The increased homozygosity caused by inbreeding
complicates the decomposition of the genetic variance
(Robertson, 1952; Harris, 1964; Gillois, 1964). Even in
the absence of epistasis, the genetic variance depends
not only on VA and VD, but also the covariance of
additive and dominance effects (CAD), the homozygous
or inbreeding dominance variance (VDI), and the sum of
squared inbreeding depression effects across loci (H*).
While there are a number of alternative formulations
(reviewed in Cornelius, 1988; de Boer and Hoeschele,
1993), we use Cockerham’s (1983) decomposition of the
genetic variance. Our symbols VA, VD, CAD, VDI, and H*

correspond to sA2 , sD2 , D1, D2, and in Cockerham (1983).
An important empirical question is whether the

inbreeding components (CAD, VDI, and H*) are quantita-
tively important. Are CAD, VDI, and H* comparable in
magnitude to VA? If alleles are nearly additive in their
effects, the inbreeding components will be small relative
to VA. Under these conditions, a model based on VA

alone can yield accurate predictions of evolutionary
change even with high levels of inbreeding (Kelly and
Williamson, 2000). If dominance is substantial, however,
the model based on VA can be very inaccurate.
Like the additive variance, the inbreeding components

can be estimated from the resemblance of relatives.
While the necessary theory has been available for some
time, the number of estimates is quite limited (see
Gallais, 1977; Cornelius, 1988; Shaw et al, 1998; Shaw and
Woolliams, 1999; Abney et al, 2000). Here, we add to this
limited collection of estimates with a study of five floral
characters of the partially self-fertilizing wildflower
Mimulus guttatus. The measurements are derived from
a breeding experiment using a large, random collection
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of inbred lines as parents. This experimental design has
the advantage of producing family types with high levels
of genetic relatedness but differing levels of inbreeding.
This greatly increases statistical power and allows
estimation of seven distinct variance components for
each trait.

Methods

We used highly inbred lines as parents in a breeding
design. John H Willis initiated over 1000 independent
lines of M. guttatus in August 1995. Each line was
identified from the seed set of a separate field-collected
plant from Iron Mountain (a detailed description of this
population can be found in Willis (1993, 1996)). Each line
was subsequently maintained in the greenhouse by
single seed descent (self-fertilization) for six generations.
Of these sixth generation lines, 300 were used in this
study. Each line was randomly assigned to a group with
two other lines. Of the three lines in each group, one was
randomly selected as sire and the other two as dams. A
single plant from the sire line was grown to maturity,
self-fertilized, and used as a pollen source for a single
plant from each of the dam lines. Each of the dams was
also self-fertilized. Five distinct progeny families, labeled
A–E, were derived from these crosses (Figure 1). Families
A and B are outbred whereas C, D, and E are inbred. We
refer to the entire collection (A–E) of plants derived from
a specific set of three lines as an extended family. There
were 100 extended families in total.

A maximum of eight pots were seeded per family (40
per extended family) on 9 March 2001 in the University
of Kansas greenhouses. As some families were short of
seed, the total number of pots was approximately 3400.
At 2 weeks after seeding, all pots were thinned to a single
plant (randomly selected) and were subsequently ferti-
lized weekly. Four morphological measurements were
taken on the first flower produced by each plant: corolla
width, corolla length, pistil length, and anther length.
Stigma–anther separation is calculated as the difference

between the latter two measurements. This difference is
analyzed instead of anther lengths. The date of first
flower is included as a fifth measurement. Flowering was
monitored daily until 60 days post-seeding, by which
time the great majority of plants had flowered. In total,
2345 plants were measured (1113 outbred and 1232
inbred). As a result of germination failure or failure to
flower, the distribution of plants across families was not
balanced. Many extended families were completely
missing one or more of their component families (A–E).

Inbreeding generally changes the mean of a trait in a
population, as well as the variance. Following Wright
(1951), we can write the mean phenotype, �ZZ, as a linear
function of F, the average inbreeding coefficient:

�ZZ ¼ MO þ FðMI �MOÞ ð1Þ

whereMO is the outbred mean andMI is the inbred mean
(the mean phenotype of a population with F¼ 1). The
difference (MI�MO) is frequently referred to as the
‘directional dominance’ or ‘inbreeding depression’ of the
trait. Here, we define b¼MI�MO. With strictly additive
inheritance, b¼ 0.

Variance components are estimated from the resem-
blance of relatives. There are four different kinds
of genetic relationship in this design (Figure 1). The
resemblance between individuals within outbred fa-
milies (A or B) provides an estimate of the genetic
covariance between outbred full sibs (Cfs). The resem-
blance between individuals within inbred families
(C, D, or E) provides an estimate of the genetic
covariance between inbred sibs (Css). A comparison
between individuals in different outbred families from
the same extended family (A vs B) provides an estimate
of the genetic covariance of outbred half-sibs (Chs).
Finally, there are a number of different comparisons
between inbred and outbred individuals related through
a single parent (A vs C, B vs C, A vs D, and B vs E).
As these comparisons are equivalent from a genetic
point of view, we denote this genetic covariance as Cos

(here we are referring to autosomal inheritance only,
see below).

Each of these covariances can be expressed as a
function of genetic parameters. The quantitative relation-
ships between phenotypic and genetic statistics depend
on the inbreeding coefficient (F) of the parents. Our
parental generation was sixth generation selfed and their
inbreeding coefficient is 1�(0.5)6¼ 0.984. We can thus
treat the parents as completely inbred (F¼ 1) to a good
approximation. Using this value for F with the equations
in Cockerham and Weir (1984), we obtain the following
relations:

Chs ¼ 1
2VA ð2aÞ

Cfs ¼ VA þ VD ð2bÞ

Css ¼ 2VA þ 4CAD þ VDI ð2cÞ

Cos ¼ VA þ CAD ð2dÞ

The component H* does not contribute to these covar-
iances and is not estimated here. For the special case
of two alleles per locus, H*¼VD (Cockerham and Weir,
1984).

We also distinguish and estimate three different envi-
ronmental sources of variation in each trait. Maternal

Figure 1 The relationships among family types (A–E) derived from
a particular set of lines (L1, L2, and L3). Thick lines denote families
derived from self-fertilization while thin lines represent the
contribution of a single gamete. Of the three parental lines, L1 is
the Sire for outbred families A and B, while L2 and L3 are Dams (for
families B and C, respectively).
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effects are a potentially important source of resemblance
among relatives. We assume that all individuals from the
same maternal plant share a common maternal effect
with variance VM. Maternal effects can be distinguished
from genetic sources of covariance by comparing sets of
individuals with equivalent genetic relationships but
differing maternal relationships. An individual in family
A has the same genetic covariance with an individual in
either family C or family D (Figure 1), but the A–C
relationship is through a male parent while the A–D
relationship is through a female. Maternal effects will
elevate the latter covariance but not the former. As
defined in this way, the maternal effect will include
maternally inherited (cytoplasmic) genetic factors (eg
Beavis and Frey, 1987; Galloway and Fenster, 2001) and
even noncytoplasmic maternal effects may be heritable
(see Willham, 1963).

A preliminary inspection of the data suggested higher
variances within inbred families than within outbred
families. Since all individuals within a family are
genetically identical (or very nearly so), this must be
owing to differing levels of environmental sensitivity. We
thus include two different environmental variances in
our model: VE(o) is the environmental variance for
outbred individuals and VE(i) is the environmental
variance for inbred individuals.

Analysis and Results

Maximum likelihood was used to estimate MO and b (as
fixed effects) and the variance components for each trait
(Shaw, 1987). Prior to extraction of variance components,
we applied (Wright 1952) first two criteria to insure that
each trait was measured on a proper scale. The first
criterion is that the level of variation within inbred lines
and within F1 families should be as uniform as possible.
The second criterion is that the distribution of each
character should be approximately normal within both
inbred and outbred samples. We were generally unable
to find a scale transformation that fully satisfied the first
criterion (see below), so we applied the somewhat
weaker condition that the variance within families (either
outbred or inbred) should be uncorrelated with the
family mean value for a particular trait.

We found that pistil length, stigma–anther separation,
and flower length satisfied these conditions, at least
approximately, on their original scale of measurement.

A square root transformation was necessary for corolla
width. The distribution of the number of days to first
flower was highly right-skewed on the original scale. To
achieve both normality and homoscedasticity, we sub-
tracted 23 from day of flower (the first plants flowered on
day 24) and then applied a logarithmic transformation to
the difference. The means and standard deviations (SD)
among outbred and inbred plants for each trait are given
in Table 1.
Estimates were obtained by finding the set of values

forMO, b, VA, VD, CAD, VDI, VM, VE(o) and VE(i) that maxi-
mize l, the log likelihood of the model given the data:

l ¼ C� 1
2 ln jVj � 1

2ðz� XZÞTV�1ðz� XZÞ ð3Þ

where V is the variance–covariance matrix of individual
measurements, z is the vector of trait values, X is an
‘incidence matrix’ for fixed effects, Z is the vector of fixed
effects, and C is a constant determined by the total
sample size (Shaw, 1987). In this application, the variance
components (VA, VD, CAD, VDI, VM, VE(o) and VE(i))
determine the numerical values of elements in V and
Z¼ [MO,b]T. The maximization is subject to the con-
straints that (1) VE(o) and VE(i) must be positive; (2) VM,
VA, VD, and VDI must be greater than or equal to zero;
and (3) CAD is constrained in absolute value by VA and
VDI. For each set of parameters, we also evaluated the
first derivatives of the log likelihood (equation (3)) with
regard to each parameter and the asymptotic dispersion
matrix (Searle et al, 1992, ch. 6; Eliason, 1993). These were
subsequently used to find the maximum iteratively by
the method of scoring (Searle et al, 1992, ch. 8; Shaw and
Woolliams, 1999).
The numerical evaluation of equation (3), as well as the

derivates and dispersion matrix, was greatly simplified
by the structure of the data. Since each extended family is
unrelated to other extended families, V assumes a block-
diagonal form (with one block corresponding to each
extended family). This allows calculation of equation (3)
from the determinants and inverses of each block. The
program to conduct these calculations was written in C
and executed on a Dell 410 workstation. As a result of the
block-diagonal form of V, a complete iteration requires
only seconds of computer time. Estimation programs
for inbreeding variance components that can accommo-
date more general data structures have been developed
by Shaw et al (1998), Shaw and Woolliams (1999), and
Abney et al (2000).

Table 1 Means and SD of each trait are given for both outbred and inbred plants in columns 1–4

Trait Outbred mean Outbred SD Inbred mean Inbred SD b

1. Sqrt (corolla width) 4.38 0.31 4.16 0.36 �0.69
(0.07)

2. Pistil length 14.7 1.33 13.8 1.61 �0.63
(0.06)

3. Stigma–anther separation 2.49 0.95 2.69 1.15 0.12
(0.06)

4. Flower length 22.6 2.62 21.0 2.93 �0.61
(0.05)

5. Ln (days to anthesis — 23) 2.64 0.40 2.82 0.38 0.51
(0.06)

The units are mm for traits 2–4, Omm for trait 1, and Ln (days) for trait 5. The last column is the estimated directional dominance, b, of each
trait (with SE) obtained from the ML procedure. b is expressed in units of outbred phenotypic standard deviations (see text) and is statistically
nonzero for each trait.
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We used the likelihood ratio method to test six distinct
null hypotheses: (1) VM¼ 0; (2) VE(i)¼VE(o); (3) VD¼ 0;
(4) CAD¼ 0; (5) CAD¼ 0 and VDI¼ 0; (6) CAD¼ 0 and
VA¼ 0. Hypotheses 1–4 reduce the likelihood model by a
single parameter. Hypotheses 4 and 5 reduce the
likelihood model by two parameters because CAD must
be 0 whenever VDI¼ 0 or VA¼ 0 (Shaw et al, 1998).
Hypotheses 1–6 were tested in order. If a parameter
proved nonsignificant (by the method described below),
it was eliminated from the model for subsequent tests.
Each null hypothesis was tested by comparing the
maximum likelihood obtained under that hypothesis
(eg CAD¼ 0) to the maximum likelihood obtained from
the model including that parameter. The null hypothesis
was rejected (at Po0.05) if 2(l1�l0) was greater than the
appropriate critical value, where l0 represents the
logarithm of the maximum likelihood obtained under
the null hypothesis and l1 denotes the corresponding
value for the model that includes the parameter. It is
generally assumed that 2(l1�l0) follows a w2 distribution
under the null hypothesis with the number of degrees
determined by the number of parameters fixed under
that hypothesis (Rice, 1988, ch. 9). The usual critical value
of 3.84 (from the w2 distribution with a single degree
of freedom) was used for hypotheses 2 and 4. However,
because VD and VM are constrained to nonnegative
values even under the null hypothesis, a critical value of
2.7 is more appropriate (Self and Liang, 1987; Shaw et al,
1998).

Estimates of the genetic parameters for each trait and
associated statistical tests are presented in Table 2. An
approximate standard error (given in parentheses) was
obtained for each estimate from the asymptotic disper-
sion matrix. As the data are amenable to resampling, we
also performed a delete-10 Jack-knife over extended
families to obtain a second set of standard errors. The
Jack-knife standard errors were comparable to, but
generally smaller than, the values from the dispersion
matrix (results not shown).

Discussion

Nonadditive components of genetic variation make an
important contribution to floral characters of M. guttatus.
The null hypothesis that these components are zero
(CAD¼ 0 and VDI¼ 0) was rejected with a high level of
confidence for four of the five traits (Po0.01 in each case;
Table 2). These results are fully concordant with the only

comparable study of a natural plant population. Shaw
et al (1998) were able to reject CAD¼ 0 and VDI¼ 0 for
each of the floral characters in their study of Nemophila
menziesii. Of course, the evolutionary relevance of CAD

and VDI depends not only on their magnitudes, but also
on the level of inbreeding in the population. M. guttatus
is a mixed mating species and the estimated selfing rate
varies from 0 to 0.75 among populations (Ritland and
Ganders, 1987; Willis, 1993; Awadalla and Ritland, 1997;
Sweigart et al, 1999). As a consequence, we expect the
nonadditive components to impact substantially evolu-
tionary change in some populations but make only a
minor contribution in others.

Floral morphology differs strikingly within the genus
Mimulus and many studies have explored the genetic
basis of this variation within and among species (Vickery,
1978; Macnair and Cumbes, 1989; Ritland and Ritland,
1989; Fenster and Ritland, 1994; Mossop et al, 1994;
Bradshaw et al, 1995; Dudash and Carr, 1998; Schemske
and Bradshaw, 1999; Willis, 1999a,b). Most directly
relevant here are two quantitative genetic studies of
floral variation within M. guttatus (Robertson et al, 1994;
Carr and Fenster, 1994). Robertson et al (1994) detected
significant additive genetic variation for corolla width,
corolla length, pistil length, stigma–anther separation,
and flowering time for a population native to California.
However, the proportion of variation in corolla size that
could be attributed to additive effects was substantially
smaller than for the same traits in this study. In contrast,
Carr and Fenster (1994) applied parent–offspring com-
parisons to plants derived from two other California
populations and obtained estimates that were generally
greater than those in Table 2. Differences in experimental
methods prevent a rigorous statistical comparison of
these studies (eg Shaw et al, 1995) and the confidence
intervals are fairly broad. However, we suggest that
the results probably reflect genuine differences in the
level of genetic variability within local populations of
M. guttatus.

This study departs from previous quantitative genetic
experiments in its detailed consideration of genetic
dominance. Robertson et al (1994) found evidence of
dominance variation in some traits, but their study does
not decompose this variation into components. The
decomposition of nonadditive variation into VD, CAD,
and VDI is valuable because each component has distinct
evolutionary implications. The standard dominance
variance VD does not contribute to selection response.

Table 2 Maximum likelihood estimates for each trait with standard errors (in parentheses) derived from asymptotic dispersion matrices

Trait VA VD CAD VDI VE(o) VE(i) VM

1. Sqrt (corolla width) 0.25 0.00 �0.09 0.38 0.62 0.73 0.12
(0.09) (0.09) (0.09) (0.19) (0.03) (0.04) (0.06)

2. Pistil length 0.24 0.06 0.01 0.20 0.61 0.65 0.10
(0.09) (0.08) (0.08) (0.17) (0.03) (0.03) (0.07)

3. Stigma–anther separation 0.36 0.07 0.02 0.27 0.57 0.73 0.0
(0.09) (0.07) (0.07) (0.16) (0.03) (0.03) (0.07)

4. Flower length 0.11 0.01 0.01 0.12 0.67 0.71 0.21
(0.07) (0.08) (0.07) (0.16) (0.03) (0.03) (0.06)

5. Ln (age at first flower – 23) 0.32 0.14 �0.10 0.21 0.50 0.44 0.04
(0.11) (0.09) (0.10) (0.19) (0.03) (0.02) (0.06)

Estimates are given in standardized units (VA+VD+VE(o)+VM=1 for each trait). Significant likelihood ratio tests are indicated with bold type
(see text for details of hypothesis testing).
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In contrast, CAD and VDI are essential to evolutionary
predictions for both the mean and the directional
dominance of traits in an inbreeding population (Wright
and Cockerham, 1985; Kelly, 1999a).

We have emphasized the effect of mating system on
floral evolution, but the mating system is itself depen-
dent on the characters considered in this study. Stigma–
anther separation may often determine the amount of
self-fertilization that occurs within a flower (Vasek, 1965;
Robertson and Lloyd, 1991; Karron et al, 1997), although
several studies of M. guttatus have failed to find a
relationship (Robertson et al, 1994; Arathi et al, 2002).
Corolla size (width and length) can influence the mating
system by affecting the ‘attractiveness’ of flowers to
pollinators (Galen et al, 1987) and thus the amount of
foreign pollen that a plant is likely to receive (or to be
visited at all). Finally, the amount and quality of pollen
may influence visitation rates (Robertson et al, 1999) and
pollen characteristics are genetically correlated with
corolla size in this population of M. guttatus (Willis,
1999a). These observations suggest an interesting reci-
procal interaction: response to selection on floral char-
acters depends on the level of inbreeding, but this level is
likely to change as floral characters evolve.

Statistical issues
There are a number of statistical issues associated with
the estimation of these variance components that merit
comment. The first regards the use of inbred lines as
parents in a breeding design. The purpose of this
experiment was to extract genetic parameter estimates
that are informative about the Iron Mountain population
of M. guttatus. Our implicit assumption is that allele
frequencies among the 300 inbred lines are representa-
tive of allele frequencies in the natural population. While
slight changes are inevitable owing to the finite number
of lines and to Mendelian segregation during line
formation, this source of randomness is accounted for
in the statistical analysis. However, deterministic
changes are assumed to be absent.

One potentially important deterministic bias is the loss
of alleles that are lethal or cause sterility in homozygous
form. Such lethal and sterile mutations would likely have
been purged from the experimental population during
line formation Willis (1999a) created these lines for
exactly this purpose. If (1) a substantial number of lethal
and/or sterile mutations are segregating in the Iron
Mountain population and (2) such mutations typically
have pleiotropic effects on floral traits, then biased
parameter estimates may result. In particular, we would
expect the experimental population to exhibit lower
overall levels of genetic variation and a relatively lower
contribution of the inbreeding components to that
variation (CAD and VDI will be reduced to a greater
extent than VA). The former reflects the fact that lethals
and steriles should have low population frequencies and
be partially or completely recessive (Simmons and Crow,
1977). Such alleles make a greater contribution to CAD

and VDI (proportionally) than do alleles with intermedi-
ate frequencies (Kelly, 1999b).

Willis (1999a) found that lethals and/or steriles make a
minority contribution to inbreeding depression in fit-
ness-related traits. This suggests a limited contribution to
genetic variation in floral traits for two reasons. First,

because lethals and steriles should have lower frequen-
cies and be more recessive than weakly deleterious
mutations, their contribution to the genetic variance in
fitness components will be smaller than their contribu-
tion to the inbreeding depression in these traits (in terms
of the percent of each quantity explained). Second, it
seems likely that their indirect contribution to floral traits
(through pleiotropy) will be lower than their direct
contribution to genetic variance of fitness traits.
Even in situations where lethals and steriles are an

important source of variation, purging during line
formation may be an advantage rather than a short-
coming of the experiment. The usual purpose of
heritability studies is to measure the evolutionary
potential of a population. While lethals and/or steriles
may contribute to variability in a trait, they are not likely
to contribute to adaptive evolution (Keightley and Hill,
1990). For this reason, the use of purging lines may
actually provide a better representation of variation that
is available to selection.
Linkage disequilibrium is a second concern for

experiments based on inbred lines. Here, we used a
large, random collection of lines as parents. Each was
identified from a distinct field collected family. With this
method of line formation, linkage disequilibria among
QTL should be low and characteristic of that in the
natural population. However, this may not be the
case in many agricultural experiments. If the number of
parental lines is limited, selected nonrandomly, or
derived from populations with a history of artificial
selection, substantial linkage disequilibrium is likely.
Serious estimation bias can result if associations among
loci are either consistently positive or consistently
negative. Negative associations, which yield the pheno-
menon of associative overdominance, have been ob-
served in studies of domestic corn (Moll et al, 1964; Lynch
and Walsh, 1998, pp 604–605). Linkage disequilibria
of this kind will bias VA and CAD downward and inflate
VD. A comparable cascade of biases result if there
are positive associations among loci. While a serious
problem, these disequilibria can be greatly reduced by
appropriate experimental design (involving repeated
rounds of random mating).

Inbreeding and genetic variance
Finally, it is worth considering the results of this study in
relation to the extensive literature on inbreeding and the
variance of quantitative characters (Fowler and Whitlock
(1999) provide references to many of these studies).
Lerner (1954) argued that inbreeding causes the break-
down of developmental canalization. Highly homozy-
gous genotypes should produce a greater range of
phenotypes than comparable heterozygous genotypes.
Experiments on a range of organisms provide some
support for this idea (Wright, 1977; Pray and Goodnight,
1997) although the results vary substantially among
studies (Fowler and Whitlock, 1999). Our results do
suggest some breakdown of canalization with inbreeding
(Table 2). The environmental variance was higher for
inbred genotypes than outbred genotypes in four of five
traits (significantly so for corolla width and stigma–
anther separation). However, we do not have any
evidence that this breakdown of canalization is detri-
mental to the organism.
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A more recent controversy concerns the quantitative
effects of inbreeding and genetic drift that result from
population bottlenecks. Several studies have noted an
increase in the amount of additive genetic variation
following a bottleneck (Bryant et al, 1986; Lopez-Fanjul
and Villaverde, 1989; Fernandez et al, 1995; Wade et al,
1996), and this result has been interpreted as inconsistent
with a purely additive model of inheritance. The additive
model does predict that the expected additive variance
will be lower after a bottleneck, but there should be
substantial variability around this expectation (with VA

actually increasing in some replicates, eg Whitlock and
Fowler, 1999). There is also debate about the kind of
nonadditive genetic variation implied by elevated VA in
‘founder’ populations. The result may reflect either the
‘conversion’ of epistatic variation into additive variation
(Cockerham and Tachida, 1988; Goodnight, 1988; Mef-
fert, 2000) or simply changes in the frequencies of rare,
recessive alleles without any epistasis (Willis and Orr,
1993).

Analyses such as we employ here could be used to
delineate between alternative nonadditive models. Each
of the founder populations in these bottleneck experi-
ments is essentially an extended family, not unlike those
used in this study. Thus, if the relationships among
individuals within a founder population are known, the
entire dataset (measurements from all populations) can
be used simultaneously to extract estimates for non-
additive components of genetic variation. Estimates for
these components can then be used to test alternative
models. For example, the rare recessives model predicts
that CAD should generally be greater than VA, and that
VDI may be three or four times greater than VA (Kelly,
1999b). Various epistatic models may also produce
specific predictions for the expected resemblance of
different classes of relatives. While such methods may
seem elaborate, the inherent complexity of genetic
architecture implies the need to bring all possible
information to bear on the problem.
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