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SHORT REVIEW

Effective size of populations with heritable variation in
fitness

T Nomura
Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kyoto 603–8555, Japan

The effective size of monogamous populations with heritable
variation in fitness is formulated, and the expression
obtained is compared with a published equation. It is shown
that the published equation for dioecious populations is inap-
propriate for most animal and human populations, because
the derivation is implicitly based on the assumption that
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Introduction
The effective size of a population is a parameter central
to understanding evolution in small populations, because
the magnitude of this parameter determines the genetic
effects of both inbreeding and genetic drift (Falconer,
1989; Caballero, 1994). This parameter is also important
for solving some practical issues; it has been used as a
key parameter in designing strategies for conservation of
endangered animal and plant species (eg, Lande and
Barrowclough, 1987; Santiago and Caballero, 2000;
Yonezawa et al, 2000) and breeding of domestic animals
(eg, Caballero et al, 1996; Bijma et al, 2001).

The effective size of a population depends on various
demographic and ecological variables (Nunney, 1991,
1993). Among these, the variation in the number of pro-
geny per parent (family size) is one with the most pro-
nounced effect (Crow and Denniston, 1988; Caballero,
1994). When the variation is due to non-inherited causes,
the effective population size is simply a function of the
variance of family size, and predictions have been
developed for a variety of cases (Caballero, 1994; Wang,
1996; Wang and Caballero, 1999). However, when the dif-
ferences in family sizes are, at least partially, due to
inherited causes, formulation of the effective size is com-
plicated by the fact that the offspring and later descend-
ants of a parent with a large (or small) family size inherit
the property.

The problem of heritable variation of family size in the
formulation of the effective size was first addressed by
Robertson (1961) in the context of artificial selection. He
introduced the idea of the accumulation of selective
advantages of individuals over generations. Following
this approach, formulae applicable to various practical
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zygotes are produced by random union of gametes, each
from conceptual male and female gametic pools. A con-
venient equation for practical use is proposed, and the appli-
cation is illustrated with the estimation of the effective size
of a rural human community in Japan.
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situations have been developed (Santiago and Caballero,
1995; Nomura, 1996, 1997; Wang, 1998; Bijma et al, 2000,
2001). Only one extension to directional selection on fit-
ness was given by Nei and Murata (1966). Based on the
approach of Robertson (1961), they worked out an equ-
ation for monoecious populations. They also extended
their derivation to dioecious populations. The equations
have been used to estimate the effective population size
of humans (Nei and Murata, 1966) and in wild animals
(Ryman et al, 1981; Kelly, 2001).

In this paper, I will first derive an expression of the
effective size of monogamous populations with heritable
variation in fitness, and will compare it with the equa-
tions of Nei and Murata (1966). We will see that their
equation for dioecious populations is inappropriate for
most animal and human populations. Finally, a more
useful equation for practical use is presented. The appli-
cation will be illustrated with published data on a human
community in Japan.

Effective size of monogamous populations
Suppose an unstructured population of monogamous
species, consisting of N/2 couples each generation. Ran-
dom mating and discrete generations are assumed. An
autosomal neutral gene unlinked to the genes affecting
fitness is considered. Formulation of the effective size is
based on the amount of genetic drift in the frequency of
the neutral allele. But as emphasized by Hill (1972), the
same expression could be derived from the loss of hetero-
zygosity (or the increase in inbreeding) in the neutral
locus. For the effective size under selection, the identity
has been proved by Nomura (1999) and Bijma et al (2000).
Environmental correlation between parental and off-
spring fitness is assumed to be absent.

Let ki be the number of progeny (which reach repro-
ductive age) of couple i. Following the terminology in the
related works (eg, Caballero and Santiago, 1995; Santiago
and Caballero, 1995), we will refer to ki as the ‘fitness’ of
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couple i. Assuming an additive model, the fitness of cou-
ple i can be partitioned as:

ki = gm(m)i + gf(f)i + ei ,

where gs(s)i is the additive genetic component from parent
of sex s(= m or f), and ei is the environmental (including
the nonadditive and sampling) component. The subscript
s in parentheses in gs(s)i is attached to emphasize the sex
of the parent. In general, gs(u)i is the genetic component
of fitness of parent of sex u(= m or f), when the genotype
is expressed in sex s. Note that for s � u, the genotype
is not expressed in the fitness of the couple, but will be
expressed when it is transmitted into descendants of sex
s. The two genetic components of fitness (gm(m)i and gf(f)i)
may be partially controlled by different sets of genes,
because some components of fitness, such as prenatal and
postnatal maternal abilities, are sex-limited. Thus, we
treat the contributions of male and female parents as two
different sex-limited traits with genetic correlation rg. The
variance of ki is decomposed as

Vk = Vgm + Vgf + Ve ,

where Vgs and Ve are the variances of gs(s)i and ei, respect-
ively. Putting

h2s = Vgs/Vk ,

the heritability of fitness may be written as

h2 =
Vgm + Vgf

Vk
= h2m + h2f . (1)

The effective population size (denoted by Ne) after one
generation is approximated by

Ne =
4N

2 + Vk
(2)

(Crow and Denniston, 1988; Caballero, 1994). The cumu-
lative effect of selection can be incorporated into the
above expression by considering the partial persistence
of the random association between the relative fitness
and the frequency of a neutral allele for which the effec-
tive size is defined (Santiago and Caballero, 1995, 1998).
Let pi (= 0,1/4, 1/2, 3/4 or 1) be the frequency of the
neutral allele in couple i, and fs(u)i(= gs(u)i/2) be the
expected contribution of parent of sex u in couple i to the
relative fitness of couple when the genotype is expressed
in sex s. The frequency of the neutral allele in the popu-
lation is p = �N/2

i=1
pi/(N/2). Only the two relative fit-

nesses, fm(m)i and ff(f)i, contribute to the change (�p) in the
frequency of the neutral allele after one generation as

�p = cov(pi, fm(m)i) + cov(pi, ff(f)i)

(Santiago and Caballero, 1995, 1998). But in the following
generations, all the associations between pi and fs(u)i are
relevant to the total cumulative change of the gene fre-
quency. Noting that under weak selection the associ-
ations are halved each generation due to segregation and
recombination (Santiago and Caballero, 1995, 1998), and
half of the persisting association contributes to the
change in the gene frequency because of the sex-limited
expression of fs(u)i, the total cumulative change (��p) can
be obtained as

��p = {1 + 1/2(1/2 + 1/4 + 1/8 + ···)}cov(pi, fm(m)i)

+ 1/2(1/2 + 1/4 + 1/8 + ···)cov(pi, ff(m)i)

+ + 1/2(1/2 + 1/4 + 1/8 + ···)cov(pi, fm(f)i) (3)

+ {1 + 1/2(1/2 + 1/4 + 1/8 + ···)}cov(pi, ff(f)i)

= Q1�pm(m) + Q2�pf(m) + Q2�pm(f) + Q1�pf(f) ,

where

Q1 = 1 + 1/2(1/2 + 1/4 + 1/8 + ···) = 3/2
Q2 = 1/2(1/2 + 1/4 + 1/8 + ···) = 1/2

and

�ps(u) = cov(pi, fs(u)i) .

Following the argument of Santiago and Caballero
(19951), the variance of �ps(u) can be written as

V(�ps(u)) =
p(1 − p)

8N
Vgs .

Analogously, the covariance between �pm(u) and �pf(u) is
expressed as

cov(�pm(u), �pf(u)) =
p(1 − p)

8N
rg �VgmVgf .

With these expressions, the variance of ��p is obtained as

V(��p) =
p(1 − p)

8N �(Q2
1 + Q2

2)Vgm

+ 4Q1Q2rg �VgmVgf + (Q2
1 + Q2

2)Vgf� .

Since the contribution of V(��p) to 1/Ne is

1
4N�(Q2

1 + Q2
2)Vgm + 4Q1Q2rg �VgmVgf + (Q2

1 + Q2
2)Vgf�

=
1
4N �52Vgm + 3rg �VgmVgf +

5
2
Vgf� .

an expression of Ne is obtained from equation 2 as

Ne =
4N

2 + [1 + 3/2 (h2m + h2f + 2rghmhf)]Vk
. (4)

If male and female components of fitness are controlled
by the same set of genes, ie, h2m = h2f and rg = 1, equation
4 reduces to

Ne =
4N

2 + (1 + 3h2)Vk
, (5)

which is the same expression as the equation for a mon-
oecious population given by Nei and Murata (1966).

Comparison with published equations
Nei and Murata (1966) extended equation 5 to a dioecious
population with equal numbers of male and female par-
ents. Their equation comparable to equation 4 can be
written as

Ne =
4N

2 + [1 + 3/4 (h2m + h2f + 2rghmhf)]Vk
, (6)

which is different from equation 4. In the following, we
consider the reason for the difference.

The implicit model assumed in the derivation of Nei
and Murata (1966) is a random union of gametes (RUG)
model. The RUG model assumed by Nei and Murata
(1966) is such that male parent i contributes kmi gametes
to a male gametic pool, and female parent j contributes
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duced by random union of gametes each from the male
and female gametic pool. In this model, the expected fit-
ness of a parent is determined only by the genotype of
the parent. Although the variation in fitness under this
model is assumed to be due to the difference of fertility
among parents (fertility selection), the following argu-
ment can be applied to the case where the variation in
fitness is caused by the difference of viability among pro-
geny (viability selection). The RUG model under viability
selection is such that all male and female parents contrib-
ute equally their gametes to the respective gametic pool,
and after random union of gametes, the survival of
zygotes is determined according to their viability. Note
that the expected fitness of a parent under this model is
not affected by the genotypes of mates, because they are
randomly sampled from the population (Caballero and
Santiago, 1995). Thus, irrespective of the types of selec-
tion, fitness in the RUG model should be defined for indi-
vidual parents rather than for couples.

This difference of the definition of fitness results in the
difference of the accumulation of the change in gene fre-
quency. This can be understood by expressing the fre-
quency of the neutral allele in couple i in our derivation
as pi = (pmi + pfi)/2, where psi (= 0, 1/2 or 1) is the gene
frequency in parent of sex s in the couple. As seen from
equation 3, all possible covariances (eight covariances)
among psi and the relative fitness fu(v)i (u, v = m or f) are
accounted for in our derivation, while under the RUG
model, the relevant covariances are limited to only four
covariances [cov(psi, fu(s)i) (s, u = m or f)], because couples
are not created. By this omission of the covariances, the
amount of the total accumulated effect is halved in the
RUG model, compared to monogamous populations.
This is reflected in the coefficient 3/4 in the denominator
of equation 6, which is half the corresponding coefficient
in equation 4. Similar reasoning has been made by Santi-
ago and Caballero (1998) and Nomura (1999) to explain
the inconsistency between equations for Ne under selec-
tion.

As in monogamous populations, the male and female
heritabilities in equation 6 are defined as h2s = Vgs/Vk. But
equation 1 does not hold in the RUG model. When male
and female components of fitness are controlled by the
same set of genes, substituting h2 � h2m = h2f and rg = 1 into
equation 6 leads again to equation 5. But we should note
that h2 in the equation for monogamous populations is
the heritability of fitness of couples, while in the RUG
model, h2 is the heritability of fitness of individuals.

Application to estimation of Ne /N in a
human population

Before the application, we modify equation 4 to a more
convenient form. In quantitative genetic studies of
human populations, father-offspring and mother-off-
spring correlations of sibship size (or equivalently parent-
son and parent-daughter correlations of the progeny
number) have been estimated (Imaizumi et al, 1970, and
references therein). Let COVk,km and COVk,kf be father-off-
spring and mother-offspring covariances of sibship size,
respectively. Assuming monogamous marriages which
will be reasonable for most human populations, at least
approximately, the two covariances can be written as

Heredity

COVk,ks =
1
2
(h2s + rghmhf)Vk

where s = m or f. Substituting this expression into equ-
ation 4 leads to

Ne =
4N

2 + Vk + 3(COVk,km + COVk,kf)
. (7)

Note that by the use of this equation, we can estimate Ne

without estimating the heritabilities and genetic corre-
lation.

Imaizumi et al (1970) studied the heritability of human
fertility in a rural community in Japan. From their results
between 1921 and 1930, I obtained the following values:

Vk = 2.154; COVk,km = 0.086; COVk,kf = 0.252

Substituting these values into equation 7, we get Ne/N =
0.774. If heritable variation in fitness is neglected
(h2m = h2f = 0), the estimate of Ne/N from equation 2 is
0.963. On the assumption of the RUG model, the coef-
ficient of covariance terms in equation 7 is halved, giving
Ne/N = 0.858. However, these estimates should be seen
cautiously because the covariances of sibship size over
generations may be inflated by non-genetic causes, as dis-
cussed in the next section.

Discussion
In theoretical population genetics, the RUG model has
been frequently assumed. Some organisms do reproduce
more or less in this fashion. For example, some aquatic
animals release large numbers of gametes into the ocean,
and some wind-pollinated plants release a vast number
of male gametes (Nunney, 1993). However, in most ani-
mal mating systems, individuals (rather than gametes)
come together to mate. In the present study, we have lim-
ited our concern to the simplest individual-based mating
system, but the derived conclusion holds for more com-
plex mating systems. To incorporate the heritable effect
of fitness into the formulation of effective size of popu-
lations with individual-based mating systems, fitness
should be defined for couples (or families in polygamy
or polyandry), and all the random associations between
the gene frequencies and the parental genetic compo-
nents of fitness in a couple or family should be
accounted for.

In our derivation, we assumed that the random associ-
ation between the neutral gene and fitness is halved each
generation. This assumption will lead to an overestim-
ation of the cumulative change in the gene frequency,
since selection reduces the random association through
the reduction in the genetic variance of fitness (Santiago
and Caballero, 1998). Caballero and Santiago (1995) for-
mulated the effect of selection on the accumulation of
change in the gene frequency in monoecious populations.

In human populations, however, traditional continuity
or ‘social inheritance’ could have a more important effect
on the persistence of the random association between the
neutral gene and fitness. As suggested by Cavalli-Sforza
and Bodmer (1971), the inheritance of family size might
be psychological as well as be physiological. In fact, the
family sizes in most human populations are apparently
below the potential maximum (Cavalli-Sforza and
Bodmer, 1971), indicating that some form of birth control
must be in operation. In wild animal populations,
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environmental correlation is likely an important cause for
the resemblance of fitness between parents and their off-
spring (Crow and Denniston, 1988). The correlation could
be positive if parent and progeny both occupy an
especially favorable niche, leading to a persisting change
in the frequency of the neutral allele in a similar process
to inherited causes. For example, from mother-daughter
regression, Kelly (2001) estimated the heritability of
female fitness of Serengeti cheetahs as 0.89. This high
heritability strongly suggests the presence of environ-
mental correlation between fitness of mothers and daugh-
ters. The persisting effect of the environmental corre-
lation on the effective population size is kept completely
as long as the progeny remain in the same niche and is
partially reduced if a part of them migrate to other
niches. Statistical analysis of fitness over three gener-
ations, such as a comparison of parent-offspring and par-
ent-grandoffspring correlations, will provide an estimate
of the persisting proportion over generations. With an
analogous argument to the present study, the persisting
proportion could be used for expressing the cumulative
effect on the effective population size.

Subdivided population structure can be a more
important cause for the resemblance of fitness between
parents and their progeny, if there are permanent
environmental differences among subpopulations and a
part of progeny remain in the same subpopulation as
their parents (Wang and Caballero, 1999). Since the
resemblance is partially reduced by the migration among
subpopulations, the persisting effect on the effective size
depends on the migration rate. Thus, the effect of popu-
lation subdivision could be theoretically modeled with an
analogy to the model of linkage between the neutral and
selected loci, in which the persisting effect on the effec-
tive size is formulated with the recombination rate
(Santiago and Caballero, 1998). Incorporation of the per-
sisting effects due to such ecological causes could extend
our understanding of evolution in small populations.
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