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The genetic variance for multiple linked quantitative
trait loci conditional on marker information in a crossed

population
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In the prediction of genetic values and quantitative trait loci
(QTLs) mapping via the mixed model method incorporating
marker information in animal populations, it is important to
model the genetic variance for individuals with an arbitrary
pedigree structure. In this study, for a crossed population
originated from different genetic groups such as breeds or
outbred strains, the variance of additive genetic values for
multiple linked QTLs that are contained in a chromosome
segment, especially the segregation variance, is investi-
gated assuming the use of marker data. The variance for a
finite number of QTLs in one chromosomal segment is first
examined for the crossed population with the general pedi-

gree. Then, applying the concept of the expectation of ident-
ity-by-descent proportion, an approximation to the mean of
the conditional probabilities for the linked QTLs over all loci
is obtained, and using it an expression for the variance in
the case of an infinite number of linked QTLs marked by
flanking markers is derived. It appears that the approach
presented can be useful in the segment mapping using, and
in the genetic evaluation of, crosses with general pedigrees
in the population of concern. The calculation of the segre-
gation variance through the current approach is illustrated
numerically, using a small data-set.
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Introduction

Best linear unbiased prediction (BLUP) of breeding
values using the mixed model methodology of Hender-
son (1984) is the predominant approach for genetic evalu-
ation of animals. Evaluation by BLUP requires that gen-
etic means, variances, and covariances are properly
modeled. Where only trait phenotype information is
used, genetic group theory under additive inheritance
was developed to account for differences in genetic
means among genetic groups or populations (eg Thomp-
son, 1979). Elzo (1990) further developed a theory to take
account of heterogeneity of variances among genetic
groups, and later the theory was extended to account for
additive variance due to segregation of alleles among
populations with different gene frequencies (Lo et al,
1993).

For situations where trait phenotype and DNA marker
information is available in outbred populations, there are
also BLUP methods developed for genetic evaluation (eg,
Fernando and Grossman, 1989; Goddard, 1992; Hoesch-
ele, 1993; van Arendonk ef al, 1994; Saito and Iwaisaki,
1996) and mixed model approaches for quantitative trait
loci (QTLs) interval mapping (eg, Grignola et al, 1996,
1997; van Arendonk et al, 1998; Saito and Iwaisaki, 2000).
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In an outbred population in which there is linkage equi-
librium between markers and linked QTLs at the popu-
lation level the overall genetic mean is not dependent on
marker information. The information on marker allele
transmission within family is used in genetic evaluation
by BLUP. In contrast, in the cases of crossbred popu-
lations originated from several genetic groups such as
breeds or outbred strains, where linkage disequilibrium
between markers and QTLs exists, all the genetic means,
variances and covariances depend on marker infor-
mation. A mixed model for such situations was presented
for a single marked QTL, in which a grouping strategy
that can take into account crossbreeding and the linkage
disequilibrium is included (Goddard, 1992). However,
Goddard’s model does not properly take account of het-
erogeneous variances among genetic groups and of the
segregation variance. Then, for the similar situation, an
alternative approach to model genetic means and
(co)variances for genetic evaluation was proposed (Wang
et al, 1998), combining the covariance theory for a marked
QTL (Wang et al, 1995) and the covariance theory for a
multi-breed population of Lo et al (1993).

Very recently, investigating the case where tightly
linked multiple QTLs or a cluster of QTLs are contained
in a chromosome segment, a mixed model approach was
proposed for QTL analysis in F, crosses between outbred
lines that allows for QTL segregation within lines as well
as for differences in mean QTL effects between lines
(Perez-Enciso and Varona, 2000). This model was
presented as a generalization of the approach by Wang



et al (1998), in which the variance for multiple linked
QTLs under the use of marker information was derived.
In this paper, we work with a crossed population with
the general pedigree, not with F, crosses only, derived
from crossing between two outbred genetic groups such
as breeds and derive an expression for the genetic vari-
ance due to a chromosome segment in which linked
QTLs are contained, especially for the segregation vari-
ance, conditional on flanking marker information.

Theory and methods

In this paper, we consider a crossed population derived
from two breeds, A and B, within each of which there
exists some genetic variation. We assume multiple linked
QTLs in a chromosome segment, linkage equilibrium in
A and B and additive gene action within and between
breeds. Here, for convenience, we use similar notation to
Perez-Enciso and Varona (2000). For use of flanking
marker information, it is supposed that marker linkage
phases in founders and the parental origins of marker
haplotypes in non-founders are known.

Assuming that all alleles of all loci have equal effects,
the distributions of the effects of A and B origin alleles
at the kth locus in individual i (¢ and gF,;,) are writ-
ten as

gﬁu,k ~ N(ug + A/2, 0%
and

g’éi,k ~ N — A/2, %)

with
e = /), Ay =
- 0%/(201)/ v h/i/k/

where I denote the gametes of paternal and maternal ori-
gin (0 and 1), u is the expected value of the additive effect
of linked QTLs in a chromosome segment, g is the num-
ber of linked QTLs within the segment, assumed finite,
A is the difference in the additive effect for linked QTLs
in the segment between two breeds, and ¢% and o3 are
the additive variances for the segment in two breeds.
Then, for a cross derived from A and B, the variance for
the additive effects due to linked QTLs (g¥) for one of the
paternal and maternal gametes is given as

q q
gﬁk> = 2 2 Cov(glkl gi,k’)- (1)
k=1 K=1

Following Lo et al (1993) and defining wy, that takes
values AA, AB, BA, and BB according to breed origin of
each allele at two loci k and k’, Perez-Enciso and Varona
(2000) obtained:

A/Q2q), o = 04/(2q) and o3

q

Var(gh = Var (2

7 q

Var(g!) = 2 Z {E[Cou(gly, gix | w1 2)
k=1 k=1 %

+ COU [E(gk | W), E(gh | w1},

where E,, represents the expectation for all the combi-
nations of wy,. Note that E,[Cov(gl, gl | wu)] is zero, if
k #k because we have assumed linkage equilibrium
within pure breeds or if wy = AB or BA. As a result,
we have:
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q q
> > ElCou(gl, gk | wie)] = pi (03/2) + (1 ®3)

k=1k=1%
— p(03/2),

where p represents the expectation of the fraction of the
segment originating from breed A in gamete & for indi-
vidual i, given breed and marker information.

The second term in equation (2) represents the segre-
gation variance for linked QTLs. Let the probability that
loci k and k” are of breed origin b and 1’, respectively, be
plw where bb" e {A B}. Expressing the expectations of the
additive genetic effects in the cases where the locus k is
of breed origin A and B by a4, = + A/2 and
Br = mx — Ay/2, respectively, the second term of equation
(2) is written as:

COU[E(g?k | W), E(gii;z | W) ]
= E[E(gffk | W) E(gi’k | Wig)]

- E[E(glk | wi)] E E(g,k | W] = Pz AAOGOG 4)

+ PlasuBe + Pl BABkak’ + PlesBiBr
— [(Phan + Plap)ow + Pipa + Plse) B
[(pi,AA + pi,BA)ak’ + (Pi,AB + p?,BB)Bk’]-

Then, with some arrangement and use of plaa(l —
Piaa) = Piaa Whas + Plsa + Plips) and so on, equation (4)
can be written as

(p?,AAp?BB - P?,ABP?,BA)AI%-

Thus, the additive variance can finally be expressed as

Var(gh = pi(oa/2) + (1 — pH(o3/2) ®)
7 4

+ 2 2 (p?,AA p?,BB - P?,AB p:],BA)A%r
k=1 k=1

In the case of the model with an infinite number of
linked loci considered, assuming that loci are distributed
uniformly along the segment, p! can be represented by
the expectation of identity-by-descent proportion (IBDP)
between the segment of gamete /1 for individual i and
that of an ancestral gamete of breed A. Thus, following
the approach of Matsuda and Iwaisaki (1998, 2000) for an
outbred population, that uses the concept of IBDP of Guo
(1994a,b, 1995) and in which there is assumed to be link-
age equilibrium between markers and QTLs, we here
consider the current situation where there exist linkage
disequilibrium between breeds.

Following Guo’s work, let the chromosome region
where a cluster of linked QTLs is contained be 0 =t =1,
and two flanking markers are located at both edges of
the region. The length of the region from the origin at
which the nth crossover occurred is denoted by S,,. Since,
for the two consecutive regions between an even-num-
bered and the next (odd-numbered) points and between
the latter and the next (even-numbered) points where
crossover occurred, the offspring receives two homolo-
gous chromosomes (paternal and maternal) of its one
parent reversely, one chromosome of the offspring can
be represented by a time-continuous, two-state Markov
chain c(t) at any point ¢ along the segment that is referred
to as the gametogenesis process, as follows
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C Spu=t<Syu1 =1
dﬁ:{ : et ©
1 - C Sz,1+] =t < 5211+2 = l/

where C is a random variable and takes values 0 and 1
with equal probability, and the time parameter ¢ is the
map distance along the chromosome. Since all meiosis
are independent, all the gametogenesis processes in a
pedigree are also independent and stochastically ident-
ical. So, using Haldane’s (1919) mapping function, the
transition probability matrix for c(f) is given as

1+e2 11— 62‘)

1—e2? 142 @

mn:vw»=%<

Then, in order to assess the relationships between
gametes of base animals of a particular genetic group A
and gamete & for a given animal i in a succeeding gener-
ation, the m relevant gametogenesis processes v(t) =
(c1(D),cx(1),. . .,c,(1)) are considered as the possible path-
ways of gene transmission from the base animals to
gamete h. Given the m processes lying between two
gametes, the statement for the joint gametogenesis pro-
cess that is the possible pathway of gene transmission is
common to all the t, and therefore this joint gametogen-
esis process is a random vector constituting a random
walk on an m-dimensional hypercube Z" =
{(mu,M2- . MM = 0 or 1}. Thus, defining the set of IBD
states representing that the gamete /i originated from
genetic group A by D, as the collection of vertices on
Z" and denoting the information on breed origin at two
flanking marker loci by v(0) = v, and v(l) = v, p, in equa-
tions (3) and (5) is obtained as

11
ho—
7=i),

D)

Plo(t) € D4 | 0(0) = vy,0() = v]dt

f [o(t) = v, | 0(0) = vo,0(]) = vldt

v,eDy
1 1
= l[roo(l)]m—\pl—vo\ [rm(l)]\vl—po‘ X UXEEDA JO P[U(t)
= 0, | v(0) = vo]Plo(l) = vlo(t) = v,]dt )

1
B IlrgoD T2l [ro; (D]l

“ 3 j

vyeDy

) Gl CRE) (3

{[roo®O]™~ fex =2l [Tol(t)]‘v —2l [700(l

0

where representing two joint gametogenesis processes
by m; = (M, - Mjire - M) a0d My = (M, - My - -rnj'm)l |of
stands for ,|n; — m, and denoting the cardinality of D,

by |D.,|, events {(v(t) = v,)} for x = 1,2, - -|D,| are mutu-
ally exclusive. So, for example, the number of joint
gametogenesis processes in which no crossover occurred
between two flanking markers, with the probability of
roo(D), is represented by m — |v;, — vo|. Now, the infor-
mation on breed composition for founders and parentage
for non-founders is referred to as breed information
(denoted as B). Then, given B and flanking marker infor-
mation (denoted as M), the second term in equation (5)
can be approximated as
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q q
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- p?,AB pffBA)AI% =~ [E(RffAA,BB|BMF) 9
- E(R?,AB,BA | BM,)]&%,

where & = A?/4, and Rl pps (Rlapps) is the mean of
Plaapiss (Plaspisa) for the whole segment, whose con-
ditional expectation is given as

E(R?,AA,BB | BM;)

1 1 s
=5 JJ Plo(t) € Dug, v(s) € Dz | v(0) = v, v(1)

1 (s
= oldtds = 5, > JJPMﬂ=mm®
0,=Dap v,=Dap ¥ 07 0
= v, | v(0) = vy,0(l) = v]dids (10)
1

= lz[roo(l)]milvlivo‘ [701 (l)]\vlfvo\

8 2 2 J’0 JO {[roo(®]™~1ox 20l [rgy ()]10x

vyeDapg vy eDapg

[roo(s — DI 12 [rgi(s — DI [rgol — s)] Iyl
[ro( — $)1v~elidtds.

which can be obtained using the appropriate IBD sets,
D g and D,4p, according to the situations of breed origin
at two different loci and denoting two different breeds
by b and b’. Note that in the case of E(R?AB BA| BM,), the
IBD sets become D,z and Dg,.

These expressions enables us to compute the variance
for an infinite number of linked QTLs under use of flank-
ing marker data for individuals in general percentages of
breed origin A and B. If one of the two flanking markers
is uninformative, then transmission can be followed for
another informative marker and the variance can be
obtained using the information on the informative one
with v(0) = v, or v(l) = v, (denoted as M,).

lllustration
In this section, using a crossbred population derived
from two breeds A and B as given in Figurel, we
numerically investigate the value of segregation variance
for the gamete, originating from individual 3, for individ-
ual 4. We compare the three cases of no marker, single
marker and flanking marker information available. It is
assumed that & = 1.0. The length of the chromosome
segment containing multiple linked QTLs (I) are altered
within the range of 0.1-0.5 M. For the gamete of concern,
the cases considered were: the case where the allele M1
is transmitted, when information on a single marker is
used, and the cases where the non-recombinant haplo-
type M1INT1 or the recombinant haplotype M1N4 is trans-
mitted, when data on flanking marker loci are used.
With [ = 0.1, the segregation variance for the gamete
of concern in the case of no marker information is

[E(RS sap5 | B) — E(RY 4p54 | B)] &
with

0.1 (s
E(Rg,AA,BB | B) N 49 0 25 J J’ {7’(2)0 (S - t)}dtds

012 o Jo



1 2
M1N1 / M2N2 M3N3 / M4N4
A B
3
B
M1N1/ M4N4
AxB
4

M1N1 or M1N4
ABxB

Figure 1 Pedigree plot with breed and marker data for a crossbred
population, in which A and B denote two breeds and M and N
show flanking markers, representing alleles by figures.

= 0.1340
and
1 0.1 s
E(RY appa | B) = 012 0.25 J f {r3, (s — H)}dtds
. o Jo
= 0.0002,

giving the value of 0.1338.
In contrast, the corresponding expression in the case
with use of marker information is yielded as

[E(RE,AA,BB | BM*) - E(Rg,AB,BA | BM*)] 82,

where M* is M or M;. For the case of a single marker,
we have

1 0.1 (s
E(Rg,AA,BB | BMj,) = 12 {roo®) 1o (Dro
01 ), J,

(s — t)}dtds = 0.0312
and

1 0.1 (s
E(Rg,AB,BA | BM;) = Olzj f {roo® 1o (D15

0 0
(s — t)}dtds = 0.0001,

and therefore the segregation variance is given as 0.0311.
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Table 1 Comparison of the values of segregation variance for the
four cases

Case Segment length (1)
01M 02M 03M 04M 05M
No marker 0.1338 0.1435 0.1542 0.1662 0.1796
Single marker 0.0311 0.0586 0.0836 0.1070  0.1296
Flanking marker
non-recombinant  0.0021  0.0083  0.0183  0.0321  0.0492
recombinant 02092 0.2118 0.2162 0.2223  0.2306

For the case where flanking marker information is used,
the value becomes 0.0021 with

0 0

1 0.1 (s
E(RE,AA,BB | BM,) = 0127’(2)0(01)J J {roo®ro D1y

(s = 1) 190 (0.1 = $)rg; (0.1 — s)}dtds = 0.0021

and

1 0.1 (s
E(RY 4g,54 | BM;) = J J {roo(Dro1 (D75

0.1%3,0.1) |, J,
(s = 1) 190 (0.1 = $)ry; (0.1 — s)}dtds = 0.0000.

Table 1 presents all the values of the segregation vari-
ance for the considered gamete for the changed values of
I that are also depicted in Figure 2. It is revealed that the
values for the cases of non-recombinant and recombinant
types are reversely and extremely different from those
for the case with a single marker used. It is also shown
that as [ becomes large, the value resulting from use of
a single marker becomes considerably near to the corre-
sponding value in the case with no marker information,
while the values in the case with use of flanking markers
of non-recombinant type essentially remain low. These
deviations in patterns from the case of no marker data
clearly indicate that use of flanking marker data substan-

0.25

0.2

0.1

Value of segregation variance

—

—
—
——

0.1 0.2 0.3 04 0.5
Segment length (M)

Figure 2 Graphical representation of the values of segregation vari-
ance, as listed in Table 1, for the selected lengths of the segment.
NM, SM, FM-NR, and FM-R denote the cases with use of no
marker, single marker, flanking marker (non-recombinant type),
and flanking marker (recombinant type), respectively.
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tially increases the information on the segregation vari-
ance, as expected.

In a crossed population between breeds or outbred
lines, marker information may be partially informative.
Therefore, while it is obvious that two informative flank-
ing markers provide more information to account for the
segregation variance than a single marker, when one of
the two markers is uninformative, only the information
on the informative marker can be used. In such situ-
ations, however, use of different informative flanking
markers out of multiple linked markers on the chromo-
some would be a reasonable approach.

Discussion

In this paper, we first considered the situation in which
a finite number of linked QTLs are located on a particular
chromosome region and then presented an expression for
the variance due to the QTLs in a cross originated from
two breeds. Using the concept of IBDP given by Guo
(1994a,b, 1995), we further investigated the variance in
the mean of the conditional probabilities for an infinite
number of linked QTLs in a chromosome segment. The
variance for the linked QTLs conditional on flanking
marker information was modeled. The results obtained
can straightforwardly be used in genetic evaluation by
BLUP using marker and trait information (Matsuda and
Iwaisaki, 2001a). Moreover, in the segment mapping of
Perez-Enciso and Varona (2000), an approach presented
here could makes it possible to utilize information not
only on F, crosses but also on any crossbred individual
in the population under study, taking into account the
segregation variance appropriately. Also in the segment
mapping, as indicated by Grignola et al (1997) for the
usual interval mapping, it would be possible to detect a
plural of clusters of QTLs by conducting the intersection-
union test. The effects for QTLs positioned outside the
segment or the marker interval can be handled as the
effects of the remaining chromosome, as in equation (5)
of Perez-Enciso and Varona (2000).

We have allowed the use of flanking markers. Indeed,
it is known that in QTL mapping utilizing flanking
marker information is more effective than use of only sin-
gle marker information (eg, Mackinnon et al, 1996). As
demonstrated in the numerical investigation, data on
flanking marker loci are also informative in taking
account of the segregation variance, relative to those on
a single marker locus.

Wang et al (1998) presented the theory to properly
model means and (co)variances in a multi-breed popu-
lation, given single marker information, in the presence
of gametic disequilibrium between the marker locus and
a linked QTL. Compared with the segregation variance
in the single QTL situation modeled by them, we note
that the current expression for the segregation variance
for multiple linked QTLs is of a different form, as would
be expected. Our expression for the segregation variance
requires the assumption that multiple linked QTLs are in
coupling phase or that the differences in the expectations
for linked QTLs between two breeds are in the same sign.
The variance component due to segregation depends on
the differences. Therefore, it is expected that the segre-
gation variance becomes highest and lowest with the
coupling and repulsion phases, respectively. When the
QTLs are not in coupling phase, the relationship between
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twice the segregation variance &* defined by Lande (1981)
and Lo et al (1993) and the difference in the expectation
A is no longer represented by

q q
&= > [A/@euDP
k=1 kK'=1

Previously, the variation in genetic composition for a
finite number of multiple linked genes or a chromosome
segment was theoretically investigated by eg, Hill (1993)
and Visscher (1996). The theory of this kind was applied
to determine whether the detected entity in QTL map-
ping using inbred lines is a single QTL of relatively large
effect or a cluster of multiple QTLs with smaller effects
(Visscher and Haley, 1996) and to investigate the power
of a chromosome test for detecting the genetic variation
on a single chromosome (Visscher and Haley, 1998).
Thus, for the crossbred population with general pedigree
derived from pure original breeds, the current approach
would also be useful to provide information on determin-
ing if a genomic region under study contains a single
QTL or multiple linked QTLs.

In this study, we assumed that parental linkage phases
of flanking markers are known. When phase information
is unknown, one way would be to compute the expec-
tation of IBDP for any possible phase, and then to add
up the expected IBDPs weighted by the corresponding
phase probabilities. Generally, however, such calcu-
lations would be tremendous, since it is likely that there
are a number of possible linkage phases and parental ori-
gins. Hence, Markov chain Monte Carlo approximation
would be a method of choice, as used by Grignola et al
(1996), Perez-Enciso and Varona (2000) and Perez-Enciso
et al (2000). This approach requires one set of assumed
linkage phases for markers in a process of the sampling.
Therefore, it seems that use of the current approach
assuming known marker linkage phases in each Gibbs
iteration could be useful in efficiently computing the
mean of the conditional probabilities required. Finally,
for populations with complex pedigrees of current type,
it would be not easy to construct the IBD sets necessitated
in equations (8) and (10). On this point, we comment that
the application of a computing procedure to systemati-
cally calculate the genetic covariance matrix whose
elements are the required (co)variances and its inverse
by recursively constructing the IBD sets (Matsuda and
Iwaisaki, 2001b) can be useful.
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