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Abstract

Technological advances have enabled the

observation of a large number of retinal

ganglion cells (RGCs) in an objective manner.

In animal models, it has been shown how

retinal ischaemia induces profound functional

and structural alterations of the inner retinal

and RGC layers by 3 months. These findings

reflect degeneration of the inner retinal layers,

the RGC population and of the retinotectal

projection. Functionally, this implies a

permanent disconnection of the retina from its

main retinorecipient target region in the brain.

Brimonidine, a selective a-2 adrenergic

agonist, has been shown to activate a-2

adrenergic receptors in the retina and promote

the survival and function of RGCs post-injury.

This agent may prevent or diminish

ischaemia-induced alterations in the inner and

RGC areas as well as in the main retinofugal

projection. Understanding the pattern of

degeneration that occurs in the major

retinofugal pathway following retinal

ischaemia will benefit ongoing studies

conducted to develop neuroprotectant-based

treatment strategies for progressive

neuropathies such as glaucoma.
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Introduction

Axotomy-induced cell death provides a classic

model for studying neuroprotection. This type

of injury may be achieved by several methods,

including optic nerve transection, complete

nerve crush, partial optic nerve transection or

partial optic nerve crush. An alternative injury

model is transient ischaemia of the retina. This

injury may be achieved either by elevation of

intraocular pressure above systemic levels or by

selective ligature of the ophthalmic vessels

(SLOV). A third and very well used model is

ocular hypertension-induced retinal injury.

Neuroprotective effects of drugs have been

shown for both axotomy- and

ischaemia-induced retinal ganglion cell

(RGC) death.1–4 Among these, a-2 agonists like

brimonidine (BMD) have been shown to have

neuroprotective potential against transient

ischaemia-induced RGC death by ligature of the

ophthalmic vessels.5,6 The models used can also

be deployed to investigate a number of

pathophysiological issues, including axonal

regeneration, synapse formation,7,8

injury-induced neuronal degeneration9,10

and prevention of injury-induced neuronal

degeneration (ie neuroprotection).3,11 This paper

examines some of the effects induced by transient

ischaemia of the retina and how some of these may

be prevented, diminished, or ameliorated.

Use of whole-mount retina preparations for

studies of RGCs

For the quantitative estimations of RGC

survival, in our studies, we have mostly used

whole-mount retina preparations. Rats are

anaesthetized and the RGC population is

prelabelled with a fluorescent tracer, fluorogold

(3%), applied to the superior colliculi, which are

its main targets in the brain.4,10 Within 1 week,

the optic nerve is intraorbitally transected, and

the retinas examined under fluorescence

microscopy. The entire RGC population can be

identified in the whole-mount retina

preparation, and the labelling persists for up to

4 weeks after tracer application.13 Over the last

few years, this model has been used to study the

survival of RGCs to various treatments or

injuries. Currently, a computer-assisted

analytical programme allows the number of
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surviving RGCs to be determined in a more systematic

and automatized fashion. During this research, it has

become apparent that an area of the superior retina of

albino rats has a particularly high density of RGCs, and

overall these retinas contain a population of RGCs that,

as average, amount to 79 000 RGCs.14

In the present studies, the injury model that we used

consisted of retinal ischaemia induced by transient

ligature of the left ophthalmic vessels for 30–90 min. The

left optic nerve head (ONH) is exposed in the orbit and

the superior aspect of its dural sheath opened

longitudinally without damaging the ONH.7 A 10-0

nylon monofilament suture is introduced between the

ONH and its sheath, and tied around the sheath. The

ligature is released up to 90 min later.6 The RGCs can

then be examined at different time points. In one study,

7 days after induction of retinal ischaemia for 60 or

90 min, cell death occurred in 36 or 47% of the RGC

population, respectively.6 By 21 days, RGCs loss

amounted to 42 or 62%, respectively (Figure 1). This

unexpected delayed effect suggested that retrograde

axonal transport was impaired in some surviving

RGCs or that there was RGC loss due to secondary

injury. We see a potential for this loss of protracted,

slow-dying wave of RGCs to be prevented with the use

of neuroprotectants including some neurotrophic factors,

such as brain-derived neurotrophic factor (BDNF), some

antiapoptotic substances and a-2 adrenergic-selective

agonists.11

Investigation of potential neuroprotective effects

on RGCs

The possibility of neuroprotective effects was

investigated using the injury model involving retinal

ischaemia. Two groups of animals were prepared for

comparison, one being treated with saline (0.9% NaCl)

and the second with BMD (0.5% in saline). Treatments

were applied to the left eye as two 5-ml drops 1 h before

ischaemia.15 Two drops of 0.5% BMD in these animals

elicited enough response to upregulate the expression of

BDNF and ciliary neurotrophic factor (CNTF) in the

retina of the animals’ left eye.16 Both neurotrophic factors

are known to reduce RGC death.1,2,4

In our earlier studies, topical application of BMD was

found to confer a dose-dependent protective effect on

RGCs.17 BMD, according to the topical doses

administered, prevented up to 90% of RCG loss. Between

7 and 21 days after ischaemia, there was an additional

slow RGC loss, which could be significantly reduced by

pretreatment with the highest BMD dose. The

administration of BMD up to 2 h, but no later, after

ischaemia still provided a protective effect to RGCs,

presumably because it was administered at a time when

a large proportion of RGCs were already committed

to die.6

A method of examining the functional aspects of RGCs

that survive injury is to investigate axonal transport.

Cells that survive ischaemia should have their retrograde

axonal transport preserved. Our findings indicate that, in

a proportion of RGCs that survive transient ischaemia of

the retina, this injury induces an impairment of

retrograde axonal transport.15 This damaged axonal

transport can be prevented, almost fully, by BMD

administered before induction of ischaemia.15 Our group

could also show that BMD protects against

ischaemia-induced degeneration of the retinotectal

projection18 (Figure 2), and preserves anterograde axonal

transport as well as inner retinal layer function19

(Figure 3).

Conclusion

In summary, retinal ischaemia induces profound

functional and structural alterations of the inner retinal

and RGC layers. These findings reflect degeneration of

the inner retinal layers, and of the RGC population and

retinotectal projection. Functionally, this implies a

permanent disconnection of the retina from its

main retinorecipient target region in the brain. BMD,

an a-2 adrenergic-selective agonist, may prevent or

diminish the ischaemia-induced alterations in the inner

and RGC areas as well as in the main retinofugal

projection. Understanding the pattern of degeneration

that occurs in the major retinofugal pathway

following retinal ischaemia will benefit ongoing studies

conducted to develop neuroprotectant-based treatment

strategies, and may provide insights into other

Figure 1 Transient ligature of the ophthalmic vessels (LOV) for
90 min results in progressive RGC loss. Data represent mean
densities (expressed as percentages of control retinas) of di-ASP
labelled RGCs in the left experimental retinas of groups of rats at
increasing survival periods of time (5–180 days) after 90 min LOV.
RGC death begins during the first 5 days and progresses for up to
2 months. (Reproduced from Lafuente et al12 with permission of
Neuroscience from Elsevier.)
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progressive diseases that may also cause ischaemia, such

as glaucoma.
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