
Optic nerve and
neuroprotection
strategies

NN Osborne, G Chidlow, CJ Layton, JPM Wood,

RJ Casson and J Melena

Abstract

Background Experimental studies have

yielded a wealth of information related to the

mechanism of ganglion cell death following

injury either to the mylinated ganglion cell

axon or to the ganglion cell body. However, no

suitable animal models exist where injury can

be directed to the optic nerve head region,

particularly the unmylinated ganglion cell

axons. The process of relating the data from

the various animal models to many different

types of optic neuropathies in man must,

therefore, be cautious.

Results Extensive studies on the isolated

optic nerve have yielded valuable information

on the way white matter is affected by

ischaemia and how certain types of

compounds can attenuate the process.

Moreover, there are now persuasive data on

how ganglion cell survival is affected when

the ocular blood flow is reduced in various

animal models. As a consequence, the

molecular mechanisms involved in ganglion

cell death are fairly well understood and

various pharmacological agents have been

shown to blunt the process when delivered

before or shortly after the insult.

Conclusions A battery of agents now exist

that can blunt animal ganglion cell death

irrespective of whether the insult was to the

ganglion cell body or the mylinated axon.

Whether this information can be applied for

use in patients remains a matter of debate, and

major obstacles need to be overcome before the

laboratory studies may be applied clinically.

These include the delivery of the

pharmacological agents to the site of ganglion

cell injury and side effects to the patients.

Moreover, it is necessary to establish whether

effective neuroprotection is only possible

when the drug is administered at a defined

time after injury to the ganglion cells. This

information is essential in order to pursue the

idea that a neuroprotective strategy can be

applied to a disease like glaucoma, where

ganglion cell death appears to occur at different

times during the lifetime of the patient.
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Introduction

Retinal ganglion cells are the output neurones

from the retina, extending their axons via the

optic nerve to defined areas of the brain. The

optic nerve consists of ganglion cell axons,

supporting glial cells in the form of astrocytes,

and blood vessels. Ganglion cell axons are

unmyelinated while passing through the nerve

fibre layer and optic nerve head but gain a

myelin sheath after leaving the lamina cribrosa.

In common with nerves of the CNS, ganglion

cell axons are myelinated by oligodendrocytes

rather than by Schwann cells, and this probably

accounts for the lack of structural regeneration

that occurs after optic nerve injuries.

Diseases involving ganglion cells are

common. Experimental data clearly show that

ganglion cell death can be initiated by insults to

the cell body and dendrites within the globe, or

to the axons outside the globe. It is clear that in

order to facilitate effective treatment of diseases

where ganglion cell loss occurs (eg glaucoma),

knowledge of the initial site of injury to the cell

is of some importance. However, even in a well-

characterised disease like glaucoma,

unambiguous identification of the initial site

and type of injury to the ganglion cell has not

proved easy. Nevertheless, there is strong

evidence that the optic nerve head region is the

site of injury to the ganglion cells in

glaucomatous optic neuropathy1–3 and

discussions have centred on whether injury to

the ganglion cell axons in this location is

primarily caused by mechanical trauma3 or by

alterations in the dynamics of blood flow.4–6 It

should of course be noted that clinical changes
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in the optic nerve head may not necessarily reflect the

site of injury to the ganglion cells. In Leber’s hereditary

optic neuropathy, for example, a mitochondrial defect is

known to be the primary cause of the disease.7

The axon as the site of injury to the ganglion cell

The optic neuropathies are a diverse group of diseases

which are characterised by visual loss due to optic nerve

dysfunction. A variety of factors can be responsible for

the disease, but in all types of optic neuropathy, the

injury is manifested at the optic nerve axon and results in

the loss of retinal ganglion cells. The most common optic

neuropathy is that associated with glaucoma, that is,

glaucomatous optic neuropathy. However, a wide variety

of other optic neuropathies are known to exist as

described by Biousee et al8 and Levin.9 Defined types of

optic neuropathy are associated, for example, with

inflammation (eg neuroretinitis), neoplasms (eg optic

nerve glioma), compression (eg orbital tumor), trauma

(eg traumatic optic neuropathy), ischaemia (eg ischaemic

optic neuropathy), toxicity/nutritional (eg methanol,

vitamin B12 deficiency), drugs (eg chloramphenicol,

digitalis), and hereditary diseases (eg Leber’s hereditary

optic neuropathy, Friedriech’s ataxia). The clinical

findings associated with a typical optic neuropathy

include optic disc oedema and atrophy, visual field

abnormalities, decreased visual acuity, changes in colour

perception, and relative afferent pupillary defects.

The knowledge that ganglion cell axons are the site of

injury in optic neuropathies has led to the development

of animal models of optic nerve injury. On the whole,

studies have utilised either the partially crushed10 or

completely transected11 optic nerve with the aim of

understanding the processes related to the final demise

of the whole of the ganglion cell. It should be noted that

in all the animal studies, the ganglion cell axon is injured

outside the optic nerve head where myelin is present.

The data derived from these experiments may therefore

not reflect precisely what occurs when the ganglion cell

axon is damaged within the optic nerve head area as is

likely to occur in, for example, glaucoma. Nevertheless,

some general conclusion may be drawn from such

studies. Firstly, death of ganglion cells is much more

rapid in very young than in adult rats.12,13 Secondly,

degeneration is more rapid when the ganglion cell axon

is transected close to the optic nerve head rather than

further away.14,15 Thirdly, not all ganglion cells die at the

same rate: in the adult cat, b ganglion cells are more

susceptible to death after optic nerve transection than a
ganglion cells.16 Fourthly, various transcription factors,

guidance molecules, extracellular matrix proteins,

neurotrophic factors, and cell death regulating factors

have been shown to be associated with ganglion cell

apoptosis following axon damage (for a recent review see

Isenmann et al17). Such studies have tended to support the

view that supplementation of appropriate neurotrophic

factors to the retina (eg BDNF) may provide a means to

slow-down the death process of ganglion cells injured by

optic nerve injury, as is proposed to occur in glaucoma.3

Cell body and dendrites as the site of injury to the

ganglion cell

Injury to the optic nerve is not the sole means of killing

ganglion cells. Ganglion cell death can also be induced

through insults directed at the cell body and dendrites. A

number of different methods have been identified, and

these include: intravitreal injection of ionotropic glutamate

receptor agonists (eg NMDA or kainate),18,19 raising the

extracellular glutamate level by blocking uptake into

Müller cells,20 and by causing retinal ischaemia.21 The cause

of cell death in all of these models is thought to essentially

occur via the same process, that is, excessive depolarisation

caused by overstimulation of ionotropic glutamate

receptors.22 As well as ganglion cells, however, other cells,

particularly subsets of amacrine cells, are also affected in

such instances.23 This is explained by the fact that

ionotropic glutamate receptors are primarily associated

with ganglion cells and subsets of amacrine cells.24

Role of toxic mediators in ganglion cell death

Present evidence suggests that retinal astrocytes and

microglia may become activated as a result of optic nerve

injury and ischaemia, and can release toxic substances (eg

glutamate, D-serine, nitric oxide, tumour necrosis factors a
and b) into the extracellular space. These factors may

contribute to the damage in ganglion cells.25 Interestingly,

in patients with glaucomatous optic neuropathy, levels of

the enzymes cyclooxygenase-1 and nitric oxide synthase,

which are involved in the synthesis of eicosanoids and

nitric oxide, respectively, and are associated with retinal

astrocytes, are elevated in glaucomatous eyes.26,27 Likewise,

in animal models of glaucoma, ganglion cell death is

attenuated by treatment with inhibitors of astrocyte-

associated nitric oxide synthase.28 These data support the

view that nitric oxide is one toxic factor that is released

from astrocytes in glaucoma and damages ganglion cells.

Role of mitochondrial dysfunction in ganglion cell

death

Mitochondrial dysfunction has been reported to occur as

a result of ischaemia29 and also in a number of optic

neuropathies.30 Mitochondria maintain the energy

requirements of the cell by oxidative phosphorylation and

produce significant amounts of reactive oxygen species
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(ROS) as a by-product. It is generally thought that

impairments in oxidative phosphorylation and

metabolism (eg oxidative stress, ischaemia) and increased

production of ROS may both contribute to the opening of

the mitochondrial permeability transition pores (mtPTP),

thus releasing factors (such as cytochrome c) into the

cellular cytoplasm to initiate apoptosis. This process can be

blocked by overexpression of Bcl-2, which is a protein

found to be associated with the outer mitochondrial

membrane.31 It may be that when ganglion cell

mitochondrial impairment occurs, as in Leber’s Heriditary

Optic Neuropathy32 that the reduced ATP level negatively

impacts axonal transport, leading to the typical

neuropathy associated with this disease (ganglion cell

apoptosis). Ganglion cell mitochondria may also be

affected in other ways. Excessive intracellular calcium

accumulation (ischaemia, excitotoxicity), reduced

extracellular zinc (see Ugarte and Osborne33), or damage to

the axon of the cell will all result eventually in apoptosis.

Studies on the isolated anoxic optic nerve and possible

therapeutic implications

Ischaemia to the optic nerve is implicated in certain optic

neuropathies, including carotid artery occlusive disease

and posterior ischaemic optic neuropathy.34 In order to

investigate the effect of ischemia on the optic nerve,

experiments have been conducted on the anoxic isolated

optic nerve. The results have yielded important insights

into potential ways of reducing the impact of such an

insult in vivo. Moreover, studies on the isolated optic

nerve preparation have provided major insights into how

white matter can be affected by ischaemia. The optic

nerve is particularly suitable for the study of white

matter because it is easily accessible and is devoid of

neuronal cell bodies and synaptic structures.35,36 By

recording the compound action potential (CAP), the

functional integrity of the isolated optic nerve can be

reliably monitored. The nerves are stimulated, and

evoked responses are recorded extracellularly, using

suction electrodes. This allows reproducible and

quantitative measurements to be made on the effect of

anoxia on the CAP and the postanoxic recovery of the

CAP.36–40 By combining CAP data with histological

analysis of the optic nerve36,41 much has been learnt

about how the optic nerve is damaged by anoxia, and the

types of substances that can blunt such an insult.

The central characteristic of optic nerve anoxic injury is

a run-down of ionic gradients. Energy failure in the optic

nerve from anoxia causes depletion of ATP and

inhibition of Na,K-ATPase. Intra-axonal sodium rises

through leakage of this ion through noninactivating

sodium channels that remain open despite membrane

depolarisation. Internal potassium is simultaneously lost

through some types of nodal or internodal potassium

channels.40 The rise in internal sodium coupled with

membrane depolarisation leads to the reversal of the

sodium/calcium exchange mechanism, which abnormally

exports sodium in exchange for calcium influx. This causes

calcium-mediated damage.42–44 The rise in intra-axonal

calcium from the extracellular space is exacerbated by

calcium influx through L-type voltage-dependent calcium

channels,45 and it has recently been shown that channel-

mediated chloride fluxes also contribute to optic nerve

injury during anoxia.46 Should reoxygenation take place,

re-energized mitochondria will import the excessive and

the large amounts of calcium, that accumulate in the

axoplasm during anoxia, contributing to reperfusion injury.

On the basis of these observations a number of

substances have been found to reduce the impact of

anoxia on the isolated optic nerve. Undoubtedly, some of

these may be of potential therapeutic importance

(Table 1). Sodium channel blockade, such as with local

anaesthetics, antiarrhythmics, and certain

anticonvulsants, has been reported to protect against

optic nerve anoxia36,37,47 as has inhibition of the sodium/

calcium exchanger with bepridil or benzamil.37 Entry of

extracellular calcium contributes to the rise in

intracellular calcium that ultimately causes axonal death

through the activation of a number of enzymes.36,39

Interestingly, it has been suggested that calcium

predominantly enters axons through sodium channels

rather than calcium channels.44 However, other

studies45,48,49 have provided evidence that entry of

calcium through calcium channels also takes place.

Inhibitors of calcium-sensitive enzymes, including

lipases, kinases, phosphatases, and proteases are

therefore potential methods of protecting the ganglion

cell axon from the effects of anoxia. In addition,

potassium channel blockers are likely to be beneficial.

Stys et al40 showed that the potassium channel blockers,

glibenclamide and tolbutamide, had no effect on CAP

Table 1 Some events leading to optic nerve anoxia and
potential therapeutics interventions

Event Blunting the event

Naþ influx Naþ channel blockers
Anticonvulsants
Antiarrhythmics
b-Adrenoceptor antagonists

Kþ efflux Kþ channel blockers
Inhibitors of Kþ/Cl�-cotransporter

Reversal of the Naþ/
Ca2þ exchanger

Specific inhibitors of the exchanger

Increase in intracellular
Ca2þ

Inhibitors of calpain, PLC, PKC, NOS
Inhibitors of L-type Ca2þ channels

Release of GABA,
adenosine

GABA and adenosine agonists
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recovery after isolated optic nerve anoxia, but that inward

rectifier potassium channels may play an important role

in the induction of anoxic injury in optic nerve axons.

An autoprotective mechanism involving adenosine

and GABA receptors has been reported in isolated optic

nerve from the rat47,49 which suggests that GABAB and

adenosine agonists may act as neuroprotectants to the

anoxic optic nerve. GABA and adenosine are released

during ischaemia from white matter, probably because of

the reversal of the membrane potential. These substances

would, therefore, cause anoxic tolerance through the

stimulation of defined receptors.50 Support for this comes

from the finding that perfusion of the isolated optic nerve

with the GABA uptake inhibitor nipecotic acid or the

adenosine uptake inhibitor propentofylline significantly

increased postanoxia survival.47,49

b-Adrenoceptor antagonists may also be expected to

protect the isolated optic nerve preparation against anoxia.

The rationale behind this statement is that some of these

substances have been shown to inhibit sodium influx into

neurons via an interaction with the voltage-sensitive sodium

channel.51,52 The drugs do not interfere with ion conductance

directly but, rather, they modulate the gating mechanism of

the sodium channel in a similar way to local anaesthetics.53 It

is of interest that some of the b-blockers that reduce sodium

influx into neurones are used to reduce intraocular pressure

in glaucoma (betaxolol, timolol, metipranolol). No other

class of drugs used in the treatment of glaucoma is known to

have sodium channel blocking properties.

Studies on animal models where ocular blood flow is

reduced to cause ganglion cell death, and possible

therapeutic implications

Ocular blood flow in the rat can be reduced in a variety

of ways to induce ganglion cell damage (Table 2). As a

consequence, a lot of data exists on the mechanism of

anoxia-induced ganglion cell death and potential ways of

blunting the process.

When a transient acute increase in IOP (eg 110 mmHg

for 30–60 min) is applied to an eye the ocular blood flow

is reduced, marked by a whitening of the fundus, and a

significant reduction in the a- and b-waves of the

electroretinogram. During reperfusion, a limited

recovery of the a- and b-waves of the electroretinogram

occurs depending on the magnitude and time of the

previously raised IOP.54–56 Importantly, it is the inner

retina, and particularly the ganglion cells, that are

affected in these animals, and as a consequence, much

has been learnt about the mechanisms of ganglion cell

death and the types of substances that are able to

attenuate the death process (Table 3).

In contrast, a modest (10–20 mmHg) increase in IOP

sustained for many weeks is not thought to cause retinal

ischaemia, yet still causes ganglion cell death (Table 2).

Many authors consider that ganglion cell death induced

by such a constant ‘chronic’ small rise in IOP simulates a

process that occurs in glaucoma.57–60 It is, however,

worth noting that a modest change in the

electroretinogram (ERG) does occur in such animals.61

Such ERG alterations are not normally associated with

glaucoma and suggest that ocular blood flow is affected.

There are, at present, few data on the types of substances

that can directly protect ganglion cells in animal models

of glaucoma. One reason why this may be the case is that

there is significant variability in relating the rise in IOP

with the degree of ganglion cell death (see Chauhan

et al62). Nevertheless, work by the group of Neufeld28,63

has shown that nitric oxide synthase inhibitors are able to

blunt ganglion cell death significantly in a rat model of

chronic glaucoma, and in another study the NMDA

antagonist, MK-801, was shown to attenuate ganglion

cell injury caused by a constant ocular hypertension.64

Unsurprisingly, an earlier study has also shown that

drugs that lower the elevated IOP, for example, betaxolol,

also protect against ganglion cell death in chronic

hypertensive animals.65

Table 2 Some ways of reducing ocular blood flow in order to
affect ganglion cell function

Procedures References

Transient acute increase in IOP (4100 mmHg) for
defined time (30–90 min) and reperfusion

23, 76

Constant chronic increase in IOP (10–20 mmHg)
for 5–10 weeks

58, 77–80

Permanent occlusion of common carotid arteries 66, 68, 81
Transient or permanent occlusion of central retinal
and posterior ciliary arteries

82, 83

Dye/photothrombosis: permanent occlusion of
retinal blood vessels

84

Permanent ligature of the ophthalmic arteries 85, 86

Table 3 Substances shown to attenuate ganglion cell death
caused by an acute increase in IOP

Substances References

b-Adrenoceptor antagonists 56, 87–90
a2-Adrenoceptor agonists 91–93
Calcium channel blockers 94–96
COX-2 inhibitor 97
Gabapentin-lactam 98
Growth factors/neurotrophins 71, 72, 99, 100
IL-1 inhibitors 101
5-HT1A receptor agonists 102
Free radical scavengers 55, 103, 104
Nitric oxide synthase inhibitors 105–107
NMDA receptor antagonists 105, 108–112
NMDA and AMPA antagonists 113
Sodium channel blockers 114
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Ischaemic damage to the optic nerve and death of

retinal ganglion cells also occurs in animals subjected to

permanent carotid occlusion.66–68 Loss of the pupil light

reflex as an indicator of ganglion cell dysfunction occurs

within 2 weeks in approximately 58% of albino rats given

permanent carotid occlusion.68 Maintenance of these

animals for 90 days or longer also results in significant

photoreceptor death68,69 possibly because a greater

amount of light reaches the retina than in animals which

still have a functional pupillary reflex. We have

confirmed that the observation made by Stevens et al68 is

correct, and that animals can effectively be screened for

ganglion cell death after carotid artery occlusion simply

by analysing their pupillary reflex. In our hands, animals

subjected to permanent carotid occlusion have lost their

pupillary reflex by 7 days postsurgery, and have

dramatically reduced mRNA (Figure 1a) and protein

(Figure 1b) levels of the ganglion cell marker

neurofilament light (NF-L) 4 weeks after carotid

occlusion. In contrast, the pupillary reflex is intact and

ganglion cell markers are unchanged in sham-operated

animals (Figure 1). The NF-L protein level is also reduced

in the optic nerve of these animals, as revealed by

immunohistochemistry and immunoblotting experiments

(Figure 2). The potential, therefore, for using this animal

model in neuroprotection studies is evident, although to

date no data on the subject have been reported.

Role of peptide factors in the protection of injured

ganglion cells

Neurones are thought to be dependent upon a supply

of certain peptide factors (growth factors, cytokines,

Figure 1 The effect of permanent occlusion of two carotid
arteries (2-V-O) on the expression of neurofilament light (NF-L;
70 kDa) mRNA (a) and protein (b) expression in rat retina as
detected by RT-PCR and immunoblotting. (a) Effect of 2-V-O on
levels of NF-L mRNA in rat retina. The data are normalised for
the housekeeping gene GAPDH, and are shown relative to
sham-operated rats. The insets show the scanned images for the
ethidium bromide-stained agarose gel on which the densitome-
try was performed. (b) Effect of 2-V-O on levels of NF-L protein
in rat retina. The data are normalised for the housekeeping gene
actin and shown relative to sham-operated rats. The insets show
the scanned images for the immunoblot on which the densito-
metry was performed. The effect of permanent vessel occlusion
is striking, with a marked loss of NF-L mRNA and protein.
**Po0.01, by unpaired t-test analysis comparing sham vs
occluded eyes, where n¼ 6–7. T¼ two vessel occlusion (2-VO)
or common carotid occlusion. S¼ Sham operated control.

Figure 2 The effect of permanent occlusion of two carotid
arteries on neurofilament (70 kDa) expression as detected by
immunohistochemistry in rat optic nerve. (a) and (b) show
transverse sections through the optic nerve, and (c) and (d) show
longitudinal sections through the same tissue. (a and c) sections
from sham operated animals whereas (b) and (d) are from eyes
subjected to permanent two vessel occlusion (4 weeks after
surgery). The effect of permanent vessel occlusion is striking,
with a marked loss of neurofilament (70 kDa) obvious in both
transverse (b) and longitudinal (d) sections. (e) Densitometric
analysis of immunoblots for neurofilament (70 kDa) and actin
(positive control) following two vessel occlusion or sham
operations in rat optic nerves. Again, there is an evident
decrease in expression of NF-L protein in occluded vs sham
operated animals. **Po0.01, by unpaired t-test analysis compar-
ing sham vs occluded eyes, where n¼ 3.
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neurotrophic factors, neurotrophins), which allow these

cells to reach their targets during growth and

development, and subsequently allow their continued

survival. It was previously thought that ganglion cells

derived all of their trophic support from the target cells,

but recent evidence suggests that the true situation is

more complicated and glial cells and neighbouring

neurons are also involved.70 Nevertheless, it is logical to

assume that removal of trophic support to ganglion

cells, whether by axonal damage to prevents retrograde

transport of factors from the brain, or from other cells

in the retina, the ganglion cells will suffer and

ultimately die. Although the precise combination of

peptide factors needed for survival of healthy ganglion

cells has not yet been delineated, a large body of work

has established that administration of various trophic

factors can delay and even partially prevent gangion

cell death after not only optic nerve injury,70 but also

following high-pressure ischaemia,71,72 or injection of

NMDA.73 Many trophic factors, including brain-derived

neurotropic factor, ciliary neurotropic factor, glial cell

line-derived neurotropic factor, neurotrophins 3 and 4,

fibroblast growth factor-2, and nerve growth factor have

been shown to exert beneficial effects on ganglion cell

survival after injury, but none of these compounds have

been able to stimulate significant neuronal regeneration

after optic nerve injury. It will be interesting to

determine the influence of these peptide factors on the

rate and extent of optic nerve and ganglion cell injury

after permanent occlusion of the carotid arteries, since

the injury is vascular rather than mechanical in nature.

Conclusions

Animal models for studying ganglion cell death and

potential neuroprotection therapies in situ are restricted

to those where the optic nerve has been transected or

crushed, where neurotoxins like NMDA have been

injected into the vitreous humour, or where the retina has

been subjected to a defined ischaemic insult. Whether

ganglion cells die by the same or different mechanisms in

each of these animal models remains to be established. It

also remains unclear whether only certain substances can

unequivocally protect ganglion cells in all of these animal

models. Assessing the merits of published data on the

subject is difficult, since it is not uncommon that

conflicting data are reported for similar experiments.

This is partly because of the difficulty in obtaining an

accurate measure for ganglion cell death. Moreover,

some authors measure ganglion cell numbers as a marker

for cell death. However, such a measure reflects only

end-stage changes and may considerably underestimate

the degree of ganglion cell injury. In addition, these

methods invariably involve counting ganglion cells in

very limited regions of the retina, and assume that cell

death is uniform. However, there is evidence that at least

one form of ganglion cell injury (ischaemic) results in

heterogenous zones of ganglion cell loss.74 Although

ganglion cell death following optic nerve transection

may be expected to be uniform, this has not been

reported, nor have possible regional differences in

ganglion cell death following optic nerve crush.

Therefore, methods based on the analysis of whole

retinal extracts (eg measurement of the total retinal levels

of a protein or mRNA specific for ganglion cells eg NF-L)

provide less variability, and thereby maximize the ability

to detect small changes relative to methods based on the

histological analysis of defined areas of the retina.

Nevertheless, it is possible to make a few general

conclusions from studies that have been conducted on

animal models in vivo. Insults such as ischaemia, NMDA-

induced toxicity, or optic nerve transection all result in at

least one population of ganglion cells dying by apoptosis.

Moreover, the same substance can sometimes protect

against ganglion cell death in all animal models. Thus,

a2-adrenoceptor agonists, NMDA antagonists and BDNF

have been shown to blunt damage to the retina caused by

optic nerve injury, NMDA-induced toxicity or ischaemia

(Table 4). A possibility worth considering is that the

fundamental pathways leading to ganglion cell death are

common, varying perhaps only in the speed of the

process (in the different animal models). If this is the case

then many of the neuroprotective substances for

ganglion cells in animal studies are likely also to blunt

the death process of ganglion cells in man. Neglecting the

questions of ethics, drug side effects, and drug delivery

Table 4 Effects of different substances on retinal damage caused by optic nerve injury, NMDA-induced toxicity or ischaemia

Substances Optic nerve injury NMDA Ischaemia

a2-Adrenoceptor agonists Protective115 Unknown Protective91,92,116

BDNF Protective117–119 Protective73 Protective71,72

CNTF Protective117,120,121 Protective122 Protective71

bFGF Protective123 Unknown Protective71,99

Caspase-1 inhibitors Not protective124 Protective125 Protective126

Caspase-3 inhibitors Protective16,127,128 Unknown Protective126

NMDA antagonists Protective115,129 Protective Protective105,108–112
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problems, it should be possible, therefore, to predict that a

substance which can protect against neuronal death in an

animal model will act similarly in the various human

ocular or brain diseases. This has yet to be shown to be the

case. One possible reason for this is timing. In laboratory

experiments, the neuroprotectant is usually delivered at,

or before, the onset of the insult. In the human situation,

this is obviously impractical. Indeed, in general,

experimental evidence suggests that ganglion cell death

cannot be attenuated in animal experiments where the

neuroprotectant has been administered a few hours after

an insult such as ischaemia, optic nerve cut, or intravitreal

injection of NMDA. A study does exist, however, where

the neuroprotectant was administered 18 h after retinal

ischaemia and found to be effective,75 but this result

remains to be confirmed. It seems sensible to conclude,

therefore, that for effective neuroprotection in a clinically

acute disease, such as stroke, success is likely to be more

difficult than for a chronic disease, such as glaucoma. This

is because treatment has to begin in the early stages of the

disease and in glaucoma possibly before characteristic

optic nerve and/or visual field changes allow an

unequivocal diagnosis of glaucomatous optic neuropathy.
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