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Abstract

Existing methodologies for imaging the optic

nerve head surface topography and measuring

the retinal nerve fibre layer thickness include

confocal scanning laser ophthalmoscopy

(Heidelberg retinal tomograph), optical

coherence tomography, and scanning laser

polarimetry. For cross-sectional screening of

patient populations, all three approaches have

achieved sensitivities and specificities within

the 60–80th percentile in various studies, with

occasional specificities greater than 90% in

select populations. Nevertheless, these

methods are not likely to provide useful

assistance for the experienced examiner at their

present level of performance. For longitudinal

change detection in individual patients,

strategies for clinically specific change

detection have been rigorously evaluated for

confocal scanning laser tomography only.

While these initial studies are encouraging,

applying these algorithms in larger numbers of

patients is now necessary. Future directions for

these technologies are likely to include ultra-

high resolution optical coherence tomography,

the use of neural network/machine learning

classifiers to improve clinical decision-making,

and the ability to evaluate the susceptibility of

individual optic nerve heads to potential

damage from a given level of intraocular

pressure or systemic blood pressure.
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Scope of this lecture

Optic nerve head surface and nerve fibre layer

(NFL) assessment

This lecture will concentrate on the existing

methodologies for imaging the optic nerve head

(ONH) surface topography and retinal nerve

fibre layer (RNFL) thickness within the

peripapillary retina and within the macula.

While a variety of technologies exist for

measuring blood flow within the superficial

layers of the optic nerve head, they do not yet

have wide clinical application and are not

discussed in this report.

Definition of terms

There are at present two principal tasks for

these imaging systems. First, cross-sectional

screening, in which an eye is imaged initially

with the intention of detecting the presence of

glaucomatous optic nerve damage. Second,

longitudinal change detection, in which an eye

that is already known to be at risk is imaged on

multiple occasions over time with the intention

of detecting change or progressive damage.

Current instruments

Heidelberg retinal tomograph

The Heidelberg retinal tomograph (HRT) is a

confocal scanning laser ophthalmoscope (CSLO)

that uses a 670 nm diode laser to obtain a series

of two-dimensional optical section images of the

ONH and peripapillary retina. A three-

dimensional topographic image of the ONH

surface is then built from the series of 16–64

serial optical sections, when algorithms are used

to find the surface at each of 256� 256 (HRT I)

or 384� 384 (HRT II) pixels over a 10 or 151 field

of view. The HRT II automatically captures

three consecutive 151 images and from these

generates a mean topographic image.

To process images, the optic disc margin

(anterior scleral canal opening) is defined by a

contour line placed around the inner margin of

the peripapillary scleral ring. The standard

reference plane for volumetric parameter

calculation is then automatically determined as

50mm posterior to the mean peripapillary

retinal height along the contour line between

350 and 3561; however, the reference plane
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definition can be modified. Magnification is

automatically adjusted by using the patients’

keratometry readings and the power of the correction

lens used to acquire the images.

For stereometric parameters, the mean coefficient of

variation has been reported to be between 3 and 5% for

both glaucoma and normal subjects.1 The mean standard

deviation for individual pixels has been reported to be

approximately 30 mm in glaucoma eyes and 25mm in

normal eyes.2,3 Individual pixel variability varies by

region, being related to the steepness of the surface, and

is highest at the edge of the optic disc cup and along

vessels. The quality and variability of the images are

associated with pupil size and density of nuclear and

posterior subcapsular cataracts.4,5 In addition, HRT

measurements are influenced by acute changes in

intraocular pressure6,7 and even the cardiac cycle.8

Current limitations of the technology include the need

to outline the anterior scleral canal opening and a

reference plane and stereometric parameters that are

dependent upon this delineation. While improvements in

image acquisition have been built into the HRT II, the

quality of the image still depends on the ability of the

technician and requires training, experience, and

dedication. Experienced technicians can acquire

acceptable images in as many as 90% of eyes. Advanced

cataract, corneal opacities, and nystagmus can prevent

adequate imaging. Better automated quality control

assessment at the time of image acquisition would warn

the operator that new or additional images are necessary

to ensure good data.

Optical coherence tomography

Optical coherence tomography (OCT) uses the principles

of low-coherence interferometry to obtain high

resolution, cross-sectional images of the human retina,

peripapillary NFL, and ONH. In a manner analogous to

B-scan ultrasonography, OCT utilises light echoes from

the scanned tissue to discriminate retinal layers due to

the differences in time delay of echoes from various

components of the retina. The light source of the OCT is a

short coherence length superluminescent diode in a near-

infrared wavelength (840 nm). Axial reflectance profiles

(A-scans) are measured vs depth. Tomographic images

are constructed from a series of A-scans. The scan rate

used is 128–512 lateral pixel retinal tomograms with a

depth of 2–3 mm captured within 1 s. The in vivo

resolution of the Stratus OCT (Carl Zeiss Meditec, Inc.,

Dublin, CA, USA) is 8–10mm and the OCT 2000 is 10–

12 mm.

OCT is capable of scanning the peripapillary retina,

ONH and macular region. The peripapillary scan is a

continuous circular scan centred on the ONH with a

default diameter of 3.4 mm. Macular and ONH scans are

composed of six radial scans in a spoke-like pattern

centred on the ONH or the fovea at 301 intervals.

Interpolation is used to fill the gaps between the scans.

For macular scans, the vitreoretinal interface and the

retinal pigment epithelium are utilised to define the inner

and outer retinal boundaries, respectively.

For ONH scans, the disc margin is defined as the end

of the retinal pigment epithelium (RPE)/choriocapillaris

layer. A straight line connects the edges of the RPE/

choriocapillaris, and a parallel line is constructed 150 mm

anteriorly. Structures below this line are defined as the

disc cup and above this line as the neuroretinal rim.

Additional OCT details can be found in the cited

references.9–13

OCT RNFL measurements show good reproducibility,

with intraclass coefficients of approximately 0.5514,15 and

coefficients of variation of approximately 10%. OCT

RNFL thickness measurements increase after

trabeculectomy-induced IOP reduction in glaucomatous

eyes. OCT RNFL measurements are not affected by

refraction changes within75.0 D.16 In the presence of

substantial media or lenticular opacities, scanning with

OCT can be difficult. While it has been suggested that no

pupillary dilation is required in patients with a pupil

diameter 42 mm, there are no available studies reporting

the percentage of patients (with or without media

opacities) who require pupillary dilation for good OCT

images, nor are there data as to the percentage of

glaucoma patients in whom satisfactory results can be

obtained.

Scanning laser polarimetry

Scanning laser polarimetry (SLP) estimates the thickness

of the peripapillary retinal NFL based on the retardation

of polarised light. Owing to their parallel architecture,

the axonal microtubules of the NFL demonstrate form

birefringence, which generates a net retardation of light

that is proportional to the NFL’s thickness

(approximately 11 of retardation per 7.4 mm of

thickness).17

To acquire an image, a polarised laser beam scans the

peripapillary retina circumferentially around the scleral

canal opening. The backscattered light (which double-

passes the RNFL) is captured and analysed. The amount

of retardation is calculated per pixel and displayed in a

retardation map of the scanned area. As the cornea, lens,

and sclera also demonstrate form birefringence, their

retardation needs to be compensated (neutralised) to

isolate that due to RNFL retardation.18–26 Older versions

of the instrument (NFL Analyzer, I and II, GDx and GDx

Access) all employed a uniform, fixed compensation in

which both axis and magnitude reflected median values
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of the general population. In the current version of the

instrument (GDx-VCC), custom anterior segment

birefringence compensation (ASBC) is employed, which

utilises an initial scan of the patient’s macula to perform

patient-specific compensation.19

To acquire images with the GDx-VCC, two imaging

trials per eye are run successively, the first to determine

ASBC, the second to image the area of interest with

adjusted ASBC. Image acquisition takes approximately

0.7 s per trial. Owing to the laser wavelength (820 nm),

mild to moderate cataract does not degrade the

images.27,28

Most literature on SLP pertains to the early versions of

the instruments. A new normative database has been

collected with the GDx-VCC. The variable ASBC has

been demonstrated to generate accurate estimates of

corneal polarisation axis and magnitude, both in healthy

eyes and in eyes with maculopathy.19,26 Recent studies

have demonstrated that custom ASBC narrows the band

of normative data,20–22 improves the discriminating

power for glaucoma detection,21,22 increases the

correlation with structural assessments obtained with

optical coherence tomography,24 and improves the

correlation with red-free fundus photographs.25

Limitations include the following: Images cannot be

obtained in eyes with nystagmus. Eyes with large

peripapillary atrophy cannot be reliably imaged. Corneal

refractive surgery has been demonstrated to variably

affect measurements with fixed ASBC.29–31 The

effectiveness of variable ASBC in eyes following corneal

refractive surgery is currently unknown. Macular disease

may affect the calculation of ASBC.26 Some eyes continue

to show atypical retardation patterns. Histological

validation in human eyes has not been done.

Current performanceFCross-sectional screening

In general, all of the instruments have achieved

sensitivities and specificities within the 60–80th

percentiles, with occasional studies suggesting that

specificity can be pushed to greater than 90% in select

populations. At present, this level of performance is

unlikely to help the experienced examiner, though the

performance of the instruments continues to improve.

HRT

A number of studies have evaluated the diagnostic

performance of the HRT in groups of patients already

diagnosed and attending glaucoma clinics. In general,

three methods have been used: (i) linear discriminant

functions;32,33 (ii) comparison of one (or more)

stereometric parameters to normative database (the

Moorfields Regression Analysis); (iii) use of computer-

assisted classification such as neural networks.34,35 Each

of these methods uses HRT parameters (global or

sectorial) as inputs to discriminate between the normal

and glaucomatous groups of eyes. In general,

sensitivities of 62–87% and specificities from 80 to 96%

have been reported.32,33,36–39 However, in most of these

studies, this level of performance was achieved in a

population similar to the one used to derive the original

discriminant functions. Other studies have suggested

that when the same strategy is applied to a new

population, the diagnostic precision is not as good.40,41

HRT descriminating precision is influenced by disc

size, with larger discs more precisely discriminated than

smaller discs.37,41 HRT performance has been compared

to stereo optic disc photography. Wollstein et al34

reported that for detection of early glaucoma, the

Moorfields Regression Analysis had a higher sensitivity

with equal specificity compared to the majority opinion

of five clinician observers. However, Greaney et al42 and

Zangwill et al39 found that clinicians qualitatively

assessing stereo optic disc photographs performed as

well as or better than the HRT.

OCT

OCT has been shown to discriminate between healthy

and glaucomatous eyes with sensitivities and specificities

ranging from 68 to 90%.42–48 Fair to moderate agreement

(Kappa¼ 0.51–0.73) was found between expert observers

for classifying OCT clinical printouts as healthy or

glaucomatous with fair sensitivities (76–79%) and

specificities (68–81%).43 Recent studies investigating

OCT-measured macular thickness suggest differences

between healthy and glaucomatous eyes.49,50 Some

evidence suggests that OCT can detect RNFL thinning in

ocular hypertensive eyes prior to the onset of achromatic

visual field defects.47,51

GDx

The sensitivity and specificity of GDx measurements

have only been reported for GDx models with fixed

ASBC. Most of these published data relate to Caucasian

populations, showing moderate discriminating power

between healthy and glaucomatous eyes.52–64

Current performanceFLongitudinal change detection

Only confocal scanning laser ophthalmoscopy has been

seriously applied to the problem of longitudinal change

detection, and very encouraging results are now

available. Only those studies which report ‘clinically

specific’ change detection strategies (or strategies that
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have demonstrated the ability to appropriately detect no

change in unchanging normal eyes) are summarised

below.

HRT

Three clinically specific change detection strategies have

been assessed in longitudinally imaged human eyes. A

superpixel strategy for ONH surface change detection

(which has been incorporated into the existing HRT

software) has been described by Chauhan et al65 and used

to detect the onset of ONH surface change in 31 of 77

ocular hypertensive (OHT) patients prior to the onset of

visual field changes. The technique performed with a

95% specificity within 37 normal eyes, but required a

total of three confirmatory tests to achieve that

specificity.66

Kamal et al67,68 used a segmental strategy to detect

change in 13 of 21 OHT visual field converter, 47 of 164

OHT visual field nonconverter and 0 of 21 normal eyes.

Tan et al69 detected change in 17 of 20 OHT converters

and one in 20 normal eyes by analysing 301 sectors of rim

area. However, they too required that change occur in

two of three consecutive tests to achieve that specificity.

Additionally, using a similar CSLO (not the HRT) to

image monkey eyes, the LSU Experimental Glaucoma

Study reported higher sensitivity and specificity for optic

disc change detection by CSLO (defined as a significant

change in two of three selected CSLO parameters in two

consecutive post-laser imaging sessions) as compared to

three fellowship-trained glaucoma specialists using

stereo photo images of the same eyes.70,71

OCT

There are no clinically specific change detection

strategies published for OCT.

GDx

There are no clinically specific change detection

strategies published for scanning laser polarimetry.

Several studies have addressed monitoring progression

in glaucoma or other optic neurodegenerative disease

using the GDx.72,73

Necessary studies

These are by no means inclusive and much needs to be

done by all three technologies:

(1) Evaluate screening performance in a population

rather than an office-based study population.

(2) Develop contour line- and reference plane-

independent screening and progression strategies.

(3) Reduce the number of confirmatory tests required

for specific progression detection from the current

number of three.

(4) Evaluate the rate of field conversion following

change detection.

(5) Compare screening and change detection

performance to glaucoma specialists using stereo photos.

(6) Determine the predictive values of each instrument

for the onset of standard and BY automated perimetry

defects in OHT patients.

(7) Determine if RNFL measurements correlate with

histologically determined RNFL thickness in human

eyes.

Future directions

High-resolution OCT

Drexler et al74 have introduced ultra-high resolution OCT

for macular pathology with an axial image resolution of

approximately 3 mm as opposed to 10 mm for standard

OCT. Applications for the peripapillary and foveal retinal

NFL thickness are actively under study.

Neural network/machine learning classifiers and other

postprocessing algorithms

Neural network and machine classifiers utilise multiple

parameters (both structural and functional) to improve

the sensitivity and specificity of clinical decision making.

Brigatti et al75 report the use of several neural network

algorithms on a database of 185 eyes of patients with

early glaucomatous visual field loss and 54 eyes of age-

matched normal control subjects. The information used

included automated visual field and structural data

(cup/disc ratio, rim area, cup volume, and nerve fibre

layer height) from computerised image analysis. A back-

propagation network with two intermediate layers

assigned an estimated probability of being glaucomatous

to each eye and correctly identified 88% of all eyes with

90% sensitivity and 84% specificity. Bowd et al35 used

neural networks and linear discriminant functions that

employed a variety of HRT data to improve glaucoma

detection. Similar strategies are under active

investigation for NFL thickness measurements.

ONH susceptibility assessment

The existing strategies for imaging the ONH surface are

designed to either detect the presence of disease (cross-

sectional screening) or the progression of disease

(longitudinal change detection). As we do not have a

science of ONH susceptibility, we do not yet have

imaging strategies for estimating whether a given optic
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nerve head will be susceptible to a given level of

intraocular pressure or systemic blood pressure. It bears

acknowledging that while we will discuss existing

strategies for cross-sectional screening and longitudinal

change detection, it is hoped that one day, we will

possess not only these strategies for clinical monitoring,

but also the equipment and knowledge necessary to

assess ONH susceptibility, that is, decide at what level of

IOP and blood pressure the connective tissues, glia, and

axons of a particular ONH will remain stable.
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