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Abstract

Purpose Ultraviolet irradiation is known to

cause oxidative DNA damage and is thought

to be a major factor implicated in the

pathogenesis of pterygium. The highly

mutagenic 8-hydroxy-20-deoxyguanosine, a

marker for the evaluation of photo-oxidative

DNA damage, can be repaired by human

8-oxoguanine glycosylase I (hOGG1). A

transition of C to G at nucleotide position 1245

in exon 7 of the hOGG1 gene is associated

with the substitution of cysteine for serine at

codon 326. In this study, we investigated the

association of the hOGG1 Ser326Cys

polymorphism with pterygium in a Chinese

population.

Methods In all, 70 patients and 86 controls

were enrolled in this study. The Ser326Cys

polymorphism was determined by the

polymerase chain reaction-restriction

fragment-length polymorphism analysis. The

association between this genetic

polymorphism and risk of pterygium was

examined by w2-test and logistic regression.

Results The allelic frequencies for the Ser

and Cys variants of hOGG1 gene were not

significantly different between the two

groups. However, when compared with Ser/

Ser and Ser/Cys genotypes combined, we

found that the homozygous Cys/Cys genotype

was more prevalent in pterygium patients than

controls (P¼ 0.024) with the odds ratio being

2.2 (95% CI: 1.1–4.5). In the pterygium group,

the mean age of patients with the Cys/Cys

genotype was younger than those with the

other two genotypes (P¼ 0.025).

Conclusions Our findings suggest that the

1245C-G transition in exon 7 of the hOGG1

gene, which results in Ser326Cys substitution

of the enzyme, might play a role in the

susceptibility of humans to pterygium.
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Introduction

Pterygia are common ocular surface lesions,

which are especially prevalent in the population

of tropical and subtropical areas. The

prevalence of pterygia in adults over 40 years

old in Southeast Asia has been estimated to be

7%.1 Pterygia may invade adjacent cornea and

cause astigmatism and visual impairment.

Surgical excision is the current treatment

strategy if the visual axis is threatened or in

cases of extreme irritation. However, the

recurrent rate is still significant.

Pterygium was regarded as an ocular

degenerative disease with pathological evidence

of degeneration in the conjunctival collagen

fibre. However, pterygia display some tumour-

like properties in their clinical appearance of

local invasion and epithelial cell metaplasia.2

Furthermore, the presence of oncogenic viruses,

such as the human papilloma virus and herpes

simplex virus,3,4 loss of heterozygosity,5 and

abnormal p53 expression in pterygium

lesions,6,7 all suggest the possible neoplastic

nature of pterygium. A model of pterygium

formation is then proposed, in which genetic

predisposition, environmental factors, and viral

infections may participate in the multistep

process.8 However, there is still a lack of strong

evidence regarding the genetics of the disease.

Although the pathogenesis of pterygium is

still uncertain, some risk factors including

ultraviolet (UV) exposure,9–12 age,1,11 race,13 and

family history14 have been proposed. Among

these risk factors, UV exposure has been

documented to have strong correlation with
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pterygium, but the mechanism by which UV light

induces pterygium remains elusive. Nolan et al15

demonstrated that heparin-binding epidermal growth

factor-like growth factor, a potent mitogen, was localized

in pterygium tissue, and was significantly induced by

UVB in pterygium-derived epithelial cells. Lu et al16 has

proposed photo-damage in pterygium from the point of

view of lipid peroxidation. UV irradiation may damage

various cellular biomolecules, especially the DNA. Once

DNA is modified without proper repair, altered genetic

expression and even mutation may occur. The photo-

oxidative damage to DNA results in pyrimidine dimers

or various DNA modifications such as 8-hydroxy-

20-deoxyguanosine (8-OHdG), strand breaks, sites of base

loss, and DNA–protein crosslinks.17 Among all the

photo-oxidative DNA products, the 8-OHdG is regarded

a sensitive and stable biomarker for evaluating the

degree of DNA damage.18 The 8-OHdG is highly

mutagenic, because it frequently mispairs with adenine

during DNA replication, ultimately giving rise to the

G–C to T–A transversion mutations.19 The increase in

8-OHdG content in DNA has been shown to increase

cancer risks.20

In human genome, there is a base excision repair

system to correct 8-OHdG. The human 8-oxoguanine

glycosylase I (hOGG1) is the key component responsible

for the removal of 8-OHdG in DNA.21 Previous genetic

studies have revealed the presence of several

polymorphisms within the hOGG1 locus.22,23 Among

them, a common polymorphism has been shown to have

a functional difference. A transition of C to G at

nucleotide position 1245 in exon 7 of the hOGG1 gene is

associated with the substitution of cysteine for serine at

codon 326. It has been proved in an Escherichia coli

complementation assay23 that the DNA repair activity of

hOGG1-Cys326 protein is lower than that of hOGG1-

Ser326. The hOGG1 Cys/Cys homozygosity has been

reported to increase the risks of lung cancer,24

oesophageal cancer,25 orolaryngeal cancer,26 and stomach

cancer.27 Additionally, some studies revealed the impact

of this genetic polymorphism on patients suffering from

chronic oxidative stress.28,29 In this study, we tried to

investigate whether the hOGG1 genetic polymorphism is

associated with the susceptibility of humans to

pterygium.

Materials and methods

We recruited pterygium patients from the Department of

Ophthalmology at the Taipei Veterans General Hospital

from August 2002 to February 2003. The diagnosis of

pterygium was established according to the clinical

finding of a wing-shaped fold of conjunctiva and

fibrovascular tissue that has invaded the adjacent cornea

for which there was no alternative explanation (for

example, trauma). Patients with ocular diseases other

than pterygium were excluded from this study. The

volunteers in the control group were healthy subjects

recruited when they attended their routine health

examination. All the subjects were nonrelated. Clinical

examination and diagnosis were all performed by the

same ophthalmologist. To eliminate the factors that

might affect the systemic oxidative stress, the exclusion

criteria for the patients and control subjects were a

history of smoking, taking vitamins or nutrition

supplements, as well as those suffering from benign or

malignant tumours, inflammatory or infectious diseases.

Each eligible subject was interviewed to obtain data on

age, sex, and occupational history. For analysis, the

occupations were combined into two groups: outdoor

(soldier, farmer, fisherman, and postman) or indoor

(professional, office worker, teacher, and housekeeper).

Our Institutional Review Board approved this study, and

informed consent was obtained from all subjects after

explanation of the nature and possible consequences of

the study.

Each subject donated 5 ml of blood that was collected

in a heparinized tube. The genomic DNA was prepared

by serial phenol/chloroform extraction and then ethanol

precipitation. The genotype of hOGG1 was determined

by the polymerase chain reaction-restriction fragment-

length polymorphism (PCR-RFLP) analysis. An aliquot

of 100 ng of genomic DNA was added to a 50ml PCR

mixture containing 10 mM Tris-HCl (pH 8.0), 50 mM KCl,

0.1% Triton X-100, 2 mM MgCl2, 200mM of each dNTP,

100 pmol of each primer, and 1 U of Taq DNA

polymerase (Biotools; B & M Labs, Madrid, Spain). PCR

was performed using the primers described by Kohno

et al,11 that is, 50-AGGGGAAGGTGCTTGGGGGAA-30 as

the forward primer and 50-ACTGTCACTA

GTCTCACCAG-30 as the reverse primer. The thermal

profile consisted of 35 cycles of denaturation at 941C for

15 s, annealing at 581C for 15 s, and extension at 721C

for 40 s, preceded by an initial denaturation step at

941C for 2 min and followed by a terminal extension at

721C for 5 min. Following PCR, 10ml of the product was

subjected to Fnu4HI digestion (2.5 U of enzyme in a 15ml

digest). The presence of C to G transversion at nucleotide

position 1245 created an Fnu4HI recognition site, which

led to digestion of the 200 bp PCR product into two DNA

fragments of 100 bp. Fnu4HI digests of PCR products

were separated by electrophoresis on a 3% agarose gel,

followed by staining with ethidium bromide.

The distributions of categorical variables (eg, gender,

occupation type, and genotype) in patients and control

groups were compared with w2-test. The continuous

variable (eg, age) was examined using the Student’s

t-test. A P-value less than 0.05 was considered to be
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statistically significant. The odds ratio (OR) and 95%

confidence interval (CI) were calculated and adjusted for

age, gender, and occupation type using logistic

regression.

Results

In total, 70 patients with pterygium and 86 healthy

subjects were enrolled in this study. The mean age in the

pterygium patients and control groups were 71.7710.1

and 68.3713.2 years, respectively. The proportions of the

male gender in two groups were 85.7 and 74.4%,

respectively. The proportions of outdoor occupation were

77.1 and 64.0%, respectively. The differences between

pterygium and control groups for age, sex, and

occupation type were not statistically significant.

The allelic frequencies for the C1245 (Ser) and G1245

(Cys) genotype of the hOGG1 gene were found to be

0.414 and 0.586 among the pterygium patient group,

compared with 0.465 and 0.535 among the control group

(P¼ 0.369) (Table 1). The distributions of hOGG1

genotypes among pterygium patients (Ser/Ser, 22.9%;

Ser/Cys, 37.1%; Cys/Cys, 40.0%) were different from

those of the control subjects (Ser/Ser, 16.3%; Ser/Cys,

60.5%; Cys/Cys, 23.3%) (P¼ 0.014). The frequency of the

Cys/Cys genotype in pterygium patients was higher

than that of normal controls. When compared with Ser/

Ser and Ser/Cys genotypes combined, homozygous

Cys/Cys genotype significantly increased the risk of

developing pterygium (P¼ 0.024), with the OR adjusted

for age, sex, and occupation type being 2.2 (95% CI:

1.1–4.5) (Table 1).

Among the pterygium patients, the mean age of

patients with Cys/Cys genotype (67.8714.1 years old)

was significantly lower than those with Ser/Ser and

Ser/Cys genotypes combined (74.374.8 years old)

(P¼ 0.025).

Discussion

Our findings showed that the hOGG1 Ser326Cys

polymorphism was associated with the susceptibility of

humans to pterygium. Individuals who carried the

homozygous Cys/Cys genotype were at a 2.2-fold higher

risk to develop pterygium. Besides, the mean age of

pterygium patients with Cys/Cys genotype was younger

than those with the other two genotypes combined.

Since the genetic polymorphism of hOGG1 has been

associated with many kinds of neoplasia, it is reasonable

to expect it to play a role in human cancer

susceptibility.24–27 In order not to interfere with our

analysis of hOGG1 polymorphism on the susceptibility

to the pterygium, the subjects suffering from benign or

malignant tumours were excluded. On the other hand,

owing to the fact that the veterans accounted for

approximately 50% of our patients, there were higher

proportions of male sex and outdoor occupation type in

our patients and controls. However, the association

between hOGG1 Ser326Cys polymorphism and

pterygium was still statistically significant after OR was

adjusted for age, sex, and occupation type.

The hOGG1 is a specific DNA glycosylase/apurinic

lyase that is responsible for the removal of 8-OHdG in

DNA. The hOGG1 molecule can recognize 8-OHdG, and

then catalyse both the release of 8-OHdG and the

cleavage of DNA at the resulting apurinic site.21 The

enzyme itself is very sensitive to UVB irradiation, which

causes photolysis of tryptophan residues at the active site

and leads to hOGG1 inactivation.30 It has been

demonstrated that a CG polymorphism at nucleotide

position 1245 in exon 7 of the hOGG1 gene results in an

amino-acid substitution from serine to cysteine at residue

326. According to the functional study by Kohno et al,23

the Cys326 allele is about seven-fold less capable of

complementing a repair-deficient E. coli strain than the

Ser326 allele in an in vitro complementation assay.

Besides, the inactivation of hOGG1 increases the

frequency of G–C to T–A transversion mutations in

Saccharomyces cerevisiae.31 It could be possible that the

Cys326 allele has reduced enzymatic activity toward

8-OHdG or increased sensitivity to UVB inactivation. As

a result, individuals bearing the homozygous Cys/Cys

genotype might allow the persistent presence of 8-OHdG

in genomic DNA and accelerate the accumulation of G–C

to T–A mutations, which may lead to an increased

susceptibility of an individual to develop pterygium.

Further studies on the effect of the genetic polymorphism

on the enzyme function of hOGG1 in vivo are warranted.

Table 1 Allelic frequency, genotype frequency, and OR of
hOGG1 Ser326Cys among pterygium patients and control
groups

Control group
(n¼ 86)

Pterygium group
(n¼ 70)

P-value

Allelic frequency
Cys 0.535 0.586 0.369
Ser 0.465 0.414

Genotype
distribution
Cys/Cys 20 (23.3%) 28 (40.0%) 0.024
Ser/Cys and
Ser/Ser

66 (76.7%) 42 (60.0%)

OR (95% CI)a 2.2 (1.1–4.5) 0.369

aOR and 95% CI were calculated by logistic regression, with the Ser/Ser

and Ser/Cys genotypes combined as the reference group and adjusted for

age, gender, and occupation type.
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In conclusion, our study demonstrated for the first

time that Ser326Cys polymorphism in hOGG1 is

associated with the risk of pterygium in Chinese. In view

of the complexity in the aetiology of pterygium, no single

genetic marker is sufficient for prediction of the risk of

this disease. Therefore, a panel of susceptibility

biomarkers including genetic polymorphisms in other

DNA repair pathways or photo-oxidative reactions is

warranted to define individuals at a high risk of

developing pterygium.
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