
Visual function in
the brain-damaged
child

CS Hoyt

Abstract

The essential role of the primary visual cortex

in visual processing has been extensively

studied over the last century or more. Injuries

to the visual cortex in adult humans can

produce blindness, referred to as ‘cortical

blindness’. In children some degree of visual

recovery has been noted in comparable

injuries and for that reason the term ‘cortical

visual impairment’ has been suggested as a

more appropriate diagnosis in children. This

term is, however, inaccurate as a significant

number of children with visual loss and

neurologic damage have injuries to the

noncerebral pathways (for example—optic

radiations in children with periventricular

leukomalacia). In this study we compare

visual outcomes and recovery in children with

primary visual cortex lesions vs those with

periventricular leukomalacia. We suggest that

the poorer outcomes of children with

periventricular leukomalacia could have been

predicted based on studies of the mechanisms

of visual recovery in infant animals following

visual cortex ablation.
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Notion of ‘visual cortex’

The notion that specific localized portions of the

cerebral cortex subserve only visual functions is

a relatively recent development in

neuroscience.1–4 During the 17th century,

scientists became interested in detailing the

pathway of the optic nerve fibres. Most of these

interests centred on a single question: What

course do the fibres of the optic nerve take

through the chiasm? During the Middle Ages

and the Renaissance, the consensus of educated

opinion was that optic nerve fibres do not

decussate but remain entirely ipsilateral

throughout their course. Sir Isaac Newton5

challenged this opinion in a short, less than a

page in length, query at the end of his book on

‘Opticks’. Newton deduced that some optic

nerve fibres had to cross in the chiasm in order

to produce a stereoscopic image.

Subsequent investigators began to ask a

second question: Where do the fibres of the

optic nerve ultimately terminate? Thomas Willis

followed the optic nerve fibres through the

chiasm to the brainstem and striate nuclei and

insisted that these were the ultimate structures

in the visual process.6 In contrast, Raymond

Vieussens7 suggested that the optic nerves

ultimately terminate in the cerebral cortex. I

shall quickly pass over the provocative proposal

of the Rene Descartes8 that optic nerve fibres

terminate in the ventricle and the images of the

two eyes merge in the pineal body. Yet, we

should note that Descartes might have been the

first to suggest that the fibres of the optic nerves

and the terminals are topographically

organized.

Herman Boerhaave described a rather bizarre

case that supported a cortical role in vision.9 He

described a Parisian pauper whose calvarium

had been removed. The pauper used it to collect

alms. For a small payment, the pauper would

allow people to touch his brain. This

occasionally elicited visual sensationsFoften

flashes of light followed by a short period of

blindness.

It was not until the early 19th century that

many scientists began to suggest that vision was

served by its own specific portions of the

cerebral cortex. Ironically, many of these first

advocates of function-specific localization in the

brain had been trained as phrenologists. In Italy,

Bartolomeo Panizza10 had been influenced by

phrenology and he suggested that visual

projections include the thalamus and ultimately

the posterior portions of the cortex. Panizza’s

thesis was based both on human pathological

studies and ablation experiments in dogs.

Panizza’s voice was largely ignored since

accepted doctrine was that while visual fibres

did go to the thalamus they went no further.

This view held that the visual ‘centre’ resides Received: 7 August 2002
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entirely in the thalamus.11 Furthermore, his work was

published in Italian and largely ignored in the leading

medical centres in England, France, and Germany.

The work of Albrecht von Graefe12 could not be

ignored. He had established in 1852 one of the leading

eye clinics in Europe. When he was 26 years old, he

founded the Archiv für Ophthalmologie. Two years later,

in 1856, he published therein his findings on early

attempts of visual field testing in patients. The

sophistication of his technique was not noteworthy but

he correctly observed that patients with homonymous

hemifield defects were often patients with posterior

cortical lesions.

Early in the 19th century, Marie-Jean Pierre Flourens13

conducted some of the first laboratory studies to

suggest that the cerebral cortex plays an essential role in

visual perception. He did not conclude, however, that

specific cortical locations subserve distinctly different

functions. His studies were based on observations of

birds after one cerebral cortex was lesioned. The full

significance of his work was not fully appreciated until

many years later.

It was in the last half of the 19th century that the

laboratory studies of David Ferrier14–18 in London and

Hermann Munk19 in Berlin firmly established that the

occipital cortex is essential to visual functions. David

Ferrier,15 a physiologist at King’s College Hospital

initially came to the erroneous conclusion that the

angular gyrus and the occipital cortex are equally

important in normal visual functions. In subsequent

experiments, he found that bilateral angular gyrus

ablations did not cause complete blindness whereas

destruction of the occipital lobes did.16 His experiments

were essential in establishing the primary role of the

occipital cortex in visual function.

At the Seventh International Medical Congress in 1881

in London, he confronted the German physiologist,

Friedrich Goltz, who was convinced that the cerebral

cortex was not divided into functionally specific loci.20 At

the Royal Institute, these two scientists each presented

animals that had undergone experimental cortical

ablations, and discussed the implications of their

findings.21 Goltz insisted that he had performed many

experiments on dogs and even after large ablations of the

cerebral cortex, they did not become blind, deaf or

paralysed. To highlight his argument, he stated that he

had brought one of his dogs with him. He insisted that

both parietal and occipital lobes had been excised, but

the dog showed no specific disability resulting from

these lesions. Ferrier countered by insisting that his

experiments led him to believe that vision, hearing,

smell, touch, and taste all have their specific cortical

representations. He described a monkey that was unable

to move its limbs on the right side 7 months after its

‘motor’ cortex had been removed. The following day

both animals were examined and their behaviour

confirmed what each man had described. However,

when the animals were killed, the lesions in the dog were

found to be much less extensive than Goltz had

indicated. This accounted for the apparent minimal

disability suffered by the dog. In contrast, the lesion in

the monkey was found to be just as Ferrier had

reportedFin the area of the rolandic fissure.22

Regrettably, this very public victory led to a serious legal

problem for Ferrier. Three months after the International

Medical Congress, Ferrier was charged with violating the

Cruelty to Animal Act of 1876. After much adverse

publicity, Ferrier was acquitted of the charges.23

Hermann Munk19 studied the effects of brain lesions

on both dogs and monkeys. Unlike Goltz and Ferrier,

he performed long-term functional examinations on his

animals, sometimes up to 5 years after the cortical lesions

were performed. He concluded that only the occipital

cortex is responsible for visual function. It is essential to

note that Munk specifically stated that upon recovery

from occipital lobe ablations, dogs are unable to

recognize objects but are capable of walking around and

avoiding them. He called this visual ability,

‘Seelenblindheit’ or ‘psycic blindness’. His description of

such a dog is dramatic:

‘He remains completely cold when looking at people

which he used to greet with joy; he remains just as cold in

the presence of dogs with which he formerly used to

play. As hungry and thirsty as he may be, he does not

look as formerly to those places in the room where he

used to find his food and even if one puts his food and

water right in his way, he frequently goes around them

without paying any attention to them. Finger and fire

approaching the eye do not make him blink. The site of

the whip, which used to drive him regularly into the

corner, does not frighten him any more in the least.’19 It

is a gripping description but our interpretation of the

nature of the residual function in these animals may be

different from Munk’s in the light of more recent

experiments to be described in the final section. It is also

important to emphasize that Munk reported that dogs

recovered additional visual function after several weeks

of recovery from the experimental surgery.

Munk’s findings were confirmed by the Italian

scientist, Luigi Luciani.24 Munk’s perception that the

occipital cortex is the primary visual cortex gained

support from the work of Edward Schäfer25–28 at the

University College, London. Schäfer presented his

studies performed on monkeys. Schäfer lesioned the

angular gyrus and the occipital cortex. In his 1887

presentation to the Royal Society, he argued that the

occipital cortex was the primary visual structure and not

the angular gyrus.28 Ferrier challenged Schäfer about the
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importance of the occipital cortex in vision and Schäfer

countered that Ferrier’s lesions had been incomplete,

thus leading to the erroneous conclusion that the angular

gyrus was the primary cortex site of visual function.

Moreover, he challenged Munk about the cortical

localization of macular function.27 Munk had concluded

that the posterior dorsal area of the occipital cortex

subserves macular function in the dog. Schäfer correctly

concluded that central visual function in monkeys and

man is represented on the mesial surfaces of the occipital

cortex. Moreover, in contrast to Munk’s findings in dogs,

Schäfer reported, ‘that removal of both occipital lobes

produces total and permanent blindness’.28 The

species-specific difference in recovery from occipital

cortex injury was thus already apparent.

More details about how the visual radiations project to

the visual cortex were provided by the studies of

myelogenesis by Paul Flechsig.29 Flechsig,30 a professor

in Leipzig, initially proposed that the visual radiations

projected from the superior colliculus, the pulvinar, and

the lateral geniculate body. He later asserted that they

arose only from the lateral geniculate body. Grafton Elliot

Smith,31,32 an Australian, studied both human and other

primate occipital cortex morphology and reached similar

conclusions about the visual radiations projecting to the

occipital cortex.

Clinical observations soon supported the role of the

occipital cortex in visual function. Herman Wilbrand,33,34

in Hamburg, studied patients with brain injuries and

concluded that vision was localized to the occipital

cortex. Similar findings were reported by the American,

Moses Allen Starr.35–37 Salomon E Henschen,38,39 a

Swedish scientist, reviewed more than 160 cases of

recorded instances of blindness and hemifield defects

resulting from cerebral injury. His material led him to

conclude that the human visual cortex is limited to the

area around the calcarine fissure and that lesions of the

angular gyrus (or posterior parietal lobe) gave rise to

visual defects only if the optic radiations were

involved.40,41

The First World War provided an unwanted

opportunity for the Irish neurologist, Gordon

Holmes,42,43 to study the results of occipital cortex

damage in men. Holmes carefully mapped the visual

field loss of men whose injuries affected the posterior

pole of the cortex. Holmes confirmed that a tiny area of

damage in this portion of the cortex produced a discrete

scotoma in the visual field. Holmes, however, insisted

that unlike Munk’s dogs who demonstrated some

residual vision after visual cortex removal, the scotoma

produced by visual cortex damage in the soldiers he

studied was ‘fixed and immutable’.42 Holmes went on to

remeasure these scotomata for many years and found

they did not change. This permanence of visual loss

associated with visual cortex damage in men would not

be challenged until a half century later with the

introduction of the controversial notion of ‘blindsight’44–

47 (an issue to be discussed at length in a later section). It

seems only appropriate to bring this historical section to

a close by noting that Gordon Holmes delivered the

Ferrier Lecture in 1944. His talk was entitled, ‘The

Organization of the Visual Cortex in Men’.43

The clinical problem and its importance

The term ‘cortical blindness’ is used to refer to the patient

who has been rendered blind by bilateral damage to the

occipital cortex. It is a term introduced as the result of

studies of adult patients.48 Cortical blindness is defined

clinically as a bilateral loss of vision with normal

pupillary responses and an eye examination, which

shows no abnormalities.49,50 In adults, this is considered

to be an infrequent event and usually the result of arterial

circulatory disease.51

For several reasons, the term ‘cortical blindness’ does

not seem appropriate to describe the clinical conditions

responsible for visual loss due to damage to the occipital

cortex and its associated structures in children.49,50,52,53

First and foremost, total absence of sight in children

caused by a bilateral disturbance of the optic radiations

and/or calcarine cortex is extremely rare.50,54–60

Moreover, unlike the case in adults, significant visual

recovery can be documented in a large proportion of the

children with visual loss caused by calcarine cortex

injury. Roland et al56 studied 30 children with visual loss

caused by occipital cortex injury and documented some

degree of visual recovery in 50%. In a study of 19 babies

with perinatal hypoxic-ischaemic insults, Casteels et al57

demonstrated that 16 of them could be documented to

have improved visual function over a 3–7 year follow-up.

Recently, Huo et al61 reported on a series of 170 children

with visual loss caused by optic radiation and/or visual

cortex damage from a number of different causes. In this

study, 60% of children showed some visual recovery. For

these reasons, the term, ‘cortical visual impairment’ was

introduced to emphasize the visual potential in these

neurologically damaged children.49,50

The term ‘cortical visual impairment’ is unfortunately

equally misleading in describing many of these children.

It fails to accurately describe the group of children with

visual impairment resulting from primarily deep

subcortical white matter insults (periventricular

leukomalacia). For this reason, the term ‘cerebral visual

impairment’ has been suggested as a replacement for

‘cortical visual impairment’. This problem surrounding a

precise terminology to describe children with visual

impairment caused by neurologic disease has been
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compounded by some who would use the term ‘cortical

visual impairment’ to describe children with ocular

motor apraxia, saccadic paralysis, visual inattention,

etc.62,63 There is an obvious need for the establishment of

an international classification of neurologic visual

disorders. For the purpose of this presentation, I will

continue to use the widely accepted term ‘cortical visual

impairment’ despite its imprecision in some cases.

Following the studies of Holmes documenting cortical

damage resulting in visual loss in adults (soldiers)

cortical visual impairment was infrequently reported in

children. Most of the cases were a result of meningitis

and/or encephalitis or hydrocephalus. The most

common organism responsible for meningitis and

cortical visual impairment is Hemophilus influenza.64,65

The onset of neurological visual loss associated with

meningitis may be late and usually occurs after the child

has recovered from the acute infection.

Thrombophlebitis64,66,67 and arterial occlusion68,69 play a

prominent role in the pathophysiology of cortical visual

impairment associated with meningitis. Encephalitis,

especially the cases due to neonatal herpes simplex

infection, may cause cerebral visual impairment.70

Hydrocephalus can cause acute and chronic cortical

visual impairment.71–73 With significant dilation of the

ventricles and the resulting distention of the posterior

cortex, occlusion of the posterior cerebral arteries and

resulting occipital cortex infarction may occur.74

However, most cases of cortical visual impairment

associated with hydrocephalus are not associated with

infarction of the occipital cortex but simply dilation of the

ventricles. Long-term shunt malfunction can cause

permanent cortical visual impairment.72 Ironically,

cortical visual impairment may occur following a

successful shunt procedure, presumably due to too rapid

correction of the elevated intracranial pressure.75

Cortical visual impairment may occur secondary to a

variety of other causes including hypoglycemia,76

haemodialysis,77 cisplatin therapy,78 seizures,79 cerebral

arteriography,80,81 malaria,82 and neurodegenerative

disorders. Trauma may produce either a transient83,84 or a

permanent85 form of cortical visual impairment. It is a

tragedy that ‘nonaccidental’ trauma is increasingly seen

as a significant cause of cortical visual impairment in all

societies.

However, a single cause accounts for the

overwhelming majority of cases of cortical

visual impairment in children-perinatal

hypoxic-ischaemia.59–61,86 With advances in perinatal care

has come increased survival rates for children with

hypoxic-ischaemic insults.55,59,87 Indeed, the increasing

prevalence of cortical visual impairment in many ways

parallels the resurgence of retinopathy of prematurity as

a cause of visual impairment in children in developed

countries.61 In San Francisco, over 50% of the visually

impaired children referred for preschool services have

cortical visual impairment, and nearly 20% have

retinopathy of prematurity.61

Cortical visual impairment is now clearly the single

greatest cause of visual impairment in young children in

developed countries.87–91 Cortical visual impairment

places a major burden on ophthalmological and

educational services in these countries. Moreover,

cortical visual impairment is rarely an isolated defect as

the vast majority of affected patients have associated

neurological or ophthalmological defects. In the study by

Huo et al,61 75% of the children had associated

neurological deficits, many of which require on-going

management and some of which may actually interfere

with visual functioning (eg seizures and anticonvulsant

therapy). In this study, over 50% of the patients with

cortical visual impairment had seizures. A significant

number of these patients are afflicted with cerebral palsy

or other motor deficits. Huo et al documented that over

40% of their patients had significant neurological deficits

affecting mobility. In the study by Rogers et al,87 53% of

the patients with cortical visual impairment had cerebral

palsy. In a study from Hong Kong, Wong92 reported that

100% of congenital and 88% of acquired cortical visual

impairment patients had associated neurological

abnormalities. The results of this can be seen by visiting

any residential blind school in the developed world

where the vast majority of students are now multiple

handicapped, and the teaching strategies developed for

children with visual impairment caused by isolated

ocular disease are found not to be appropriate or

effective for these children with cortical visual

impairment.93–96

Pathophysiology of hypoxic-ischaemic brain injury

in preterm and term infants

It is essential to understand the pathophysiology of

hypoxic-ischaemic brain injury in neonates when

discussing cerebral visual impairment. First, as has

already been stated, hypoxic-ischaemic brain injuries are

the most common cause of cortical visual impairment in

children. Yet, equally important and often ignored is the

fact that several distinctly different patterns of brain

injury can result from hypoxic-ischaemic insults

depending on the child’s age, severity of hypoxia, and

duration of hypoxia.97–101 These different patterns of

injury result in different clinical manifestations of cortex

visual impairment and, I believe, strikingly different

prognoses for recovery due to involvement or sparing of

specific neural structures.

That hypoxia is usually the initiating stimulus in the

sequence of events leading to brain injury in the
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asphyxiated child is well established.102–104 However,

hypoxia is not the primary factor in producing the actual

brain damage. Hypoxia and the accompanying

hypercarbia result in a loss of the normal vascular

autoregulation in the brain. This, in turn, leads to

pressure-passive blood flow.105 Ordinarily, blood vessels

of the brain constrict when the blood pressure increases

and dilate when the blood pressure decreases. This

process helps maintain a relatively constant blood flow in

the brain. Thus, hypoxia precipitates a reduction in

systemic blood flow that is then coupled with a loss of

autoregulation of cerebral blood flow. These are the

factors that led to decreased perfusion of the brain.106,107

It is this resulting hypoperfusion of the brain that

initiates the actual brain damage. It should be noted that

the newborn brain is extremely resistant to hypoxic

damage in the setting of normal cerebral blood flow. This

is because glucose and other available energy substrates

can prevent brain damage, at least in the short term.108 In

addition to the loss of vascular autoregulation, hypoxia

alters capillary permeability, and with reperfusion these

capillaries may bleed leading to intracerebral or

intraventricular haemorrhage.109,110 The minimum

duration of hypoperfusion necessary to produce brain

damage in human infants is not yet conclusively

established. However, in experimental infant animal

models, 7–10 min of hypoperfusion results in some brain

damage.111,112

A mild to moderate reduction in cerebral blood flow in

the newborn infant leads to a shunting of blood from the

anterior circulation to the posterior in order to maintain

normal flow to the life-essential structures in the

brainstem, basal ganglia, and cerebellum.113 In this

situation, the resulting brain damage is concentrated in

the intervascular zones (watershed areas) of the cortex.

However, in severe hypoperfusion conditions, the

shunting mechanism is apparently inadequate to protect

these vital deeper brain structures.114,115 Indeed, in this

situation the initial injuries are concentrated in the

thalami and brainstem, and only later in the process does

damage occur to the cortex and subcortical white

matter.98,116,117

The mechanisms responsible for these specific patterns

of selected brain damage are not completely understood.

However, at least two possible mechanisms have been

suggested. The first postulates that the patterns of brain

injury are related to the relative regional energy

requirements of the brain at the time of injury.120 It is well

known that regions of the brain undergoing myelination

show greater metabolic activities than those not yet

myelinated.118–120 MRI studies of newborns who suffer

significant hypoperfusion injuries consistently show a

close correlation between the normal patterns of age-

related myelination and the sites of brain injury.101,120–122

A second theory suggests that the pattern of brain injury

in hypoxic-ischaemic encephalopathy is related to the

distribution of N-methyl-D-asparate (NMDA)

receptors.123,124 This theory asserts that the brain damage

associated with hypoxia and hypoperfusion is primarily

because of the release of excessive excitatory amino

acids, primarily glutamate.125 Neurons with NMDA

receptors will be the primary ones affected by the release

of glutamate and the chain of chemical events it induces

that led to cell death. Thus, the pattern of brain injury is

determined by the concentration of NMDA receptors,

which varies during different stages of brain

development.124

Most important to clinicians is the fact that no matter

what the pathophysiologic explanation may be, the

patterns of brain injury resulting from hypoxia and

hypoperfusion are affected by the postconceptional age

of the child. Full-term infants will sustain injury

primarily at the watershed zones of the cerebral cortex

with minimal damage to the periventricular white

matter. In sharp contrast, premature infants who sustain

a comparable hypoxic-hyperfusion event will undergo

significant periventricular injury with little or no cortical

damage. An age-related change in location of the

intervascular boundary zones has been cited as the main

reason for this marked difference in injury pattern

depending on the infant’s age.126,127 It is suggested that

ventriculofugal blood vessels in the brain are poorly

developed in the premature infant. Thus, entire blood

supply to the cortex as well as the subcortical areas is

dependent on the ventriculopetal blood vessels

penetrating from the surface of the brain. An additional

factor in the tendency for the periventricular area to be

damaged in premature infants is that this region

responds to hypoxia differently than the cortex. It uses

anaerobic glycolysis, which results in a tissue-damaging

acidosis.128 Some degree of periventricular white matter

damage is a common finding on imaging studies of

premature infants who survive a hypoxic-hypoperfusion

injury. It is especially common in those premature infants

with hyaline membrane disease, hypocapnia, twin

pregnancy, septicaemia, or ischeamia.99,129,130

Patterns of injury on neuroimaging studies of children

with cortical visual impairment

Several types of brain injury may occur in premature

infants owing to a mild to moderate episode of hypoxia

and hypoperfusion. These included periventricular

leukomalacia, periventricular haemorrhagic infarction,

germinal matrix haemorrhage, intraventricular

haemorrhage, and cerebellar infarction.129 However, I

will limit this discussion to injury of the periventricular

white matterFthe most common site of brain injury
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related to hypoxia-hypoperfusion in premature

infants.106,107,130 The corticospinal tracts run through the

periventricular region and for this reason, impaired

motor function is the most common sequela of

periventricular white matter injury. Spastic diplegia,

weakness of the lower extremities, is the most common

neurologic disability in premature infants with an

incidence of 5–15%.131 Visual impairment is quite

common in premature children with spastic diplegia,

with the incidence as high as 70%.132,133 These children

almost invariably have some form of periventricular

leukomalacia.

As a result of the difficulty involved in transporting

and caring for very sick premature infants, CT and MRI

are not usually used in the early evaluation of these

patients. The initial studies are usually ultrasonograms.

However, once the infant has been discharged from the

hospital, MRI and CT are more useful and accurate than

ultrasonogram in assessing the extent of subcortical

white matter damage and associated pathologies. CT and

MRI studies of these patients may demonstrate: (1)

ventriculomegaly with an irregular outline of the body

and trigone of the lateral ventricles, (2) reduced volume

of periventricular white matter, and (3) deep, prominent

sulci that abut or nearly abut the ventricles with little or

no interposed white matter.134,135 In addition, MRI will

show increased signal intensity in the area of the

periventricular white matter and delayed

myelination.57,136 It is especially important to note that

sagittal MRI may reveal thinning of the corpus callosum

owing to degeneration of the transcallosal fibres.137,138

An entirely different pattern of brain injury is seen in

premature infants who have suffered a profound

hypotensive event or cardiopulmonary arrest. Injury is

concentrated in the deep grade matter and brainstem

nuclei, although some periventricular damage may occur

as well.101,114 The brainstem, cerebellum, and thalami are

predominately injured. An MRI performed several

months after injury will reveal small thalami, brainstem,

and cerebellum, often accompanied by reduced cerebral

white matter.97 The survival rates for this group are poor

but, if they survive, they may present with athetosis in

addition to quadraparesis, severe seizure disorder, and

mental retardation.56

As a result of improved survival rates of very

premature infants,139 periventricular leukomalacia is

seen with increasing frequency as a cause of cortical

visual impairment.104,140 In contrast, the incidence of

encephalopathy secondary to hypoxic-ischaemic injury

in term infants appeared to be decreasing.141

Nevertheless, 10–15% of cerebral palsy is secondary to

perinatal hypoxic-ischaemic injury in term infants.142,143

The primary injury in term infants who suffer a mild to

moderate hypoxic-hypoperfusion event occurs at the

watershed areas, the regions between the middle and

posterior cerebral arteries and between the anterior and

middle cerebral arteries. This results in discrete, often

cystic, infarctions in the boundary zones between the

major vascular territories. Thus, infarction is most likely

to occur in the frontal and the parieto-occipital regions.

In the acute phase of injury, neither ultrasound nor CT

studies are accurate in delineating the extent of

injury144,145 MRI is, therefore, preferred in evaluating

these patients. After the child has recovered from the

acute hypoxic-ischaemic insult, MRI studies may reveal

(1) cortical thinning and diminution of the underlying

white matter in the area of infarction, (2) ex vacuo dilation

of the lateral ventricles, (3) the development of a gyral

anomaly, ulegyria, due to the pattern of shrinking cortex,

and (4) wedge-shaped infarction in the watershed

zones.146

A distinctly different pattern of brain injury is

seen in term infants who suffer a profound

hypoxic-hypoperfusion event or cardiocirculatory arrest.

Most of these children however do not survive.147,148

Injury occurs primarily in the lateral thalami, posterior

putamina, hippocampus, and corticospinal

tracts.101,149,150 It is essential to know that many of these

children will also show significant injury to the lateral

geniculate bodies and the optic radiations. The cortex is

usually spared except for the peri-Rolandic gyri.101

From the point of view of ophthalmologists evaluating

children with cortical visual impairment, it is primarily

the premature infants with periventricular leukomalacia

and the term infants with infarction of the striate cortex

who are of interest. First, both groups reveal significant

damage to important visual structures. Second, the

neurological consequences of profound hypoxia and

ischaemia in premature and term infants are so

devastating that visual assessment is often nearly

impossible although no less important. Third, the

survival rates for profound hypoxic-ischaemic episodes

in preterm or term infants remain poor.

The clinical profile and visual prognosis of the child

with periventricular leukomalacia and infarction of the

visual cortex

Most studies of cortical visual impairment have

described the clinical characteristics of the patients and

their visual outcomes as if they were a homogeneous

group of patients.49,50,56,61 The previous discussion

should have made clear that nothing is further from the

truth. There are multiple aetiologies of cortical visual

impairment in children. There are also distinctly different

areas of the brain damaged as a result of these

different aetiologic factors. Moreover, in the case of

hypoxic-ischaemic insults, the pattern of neurologic
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damage is very different depending upon whether

the infant was born preterm or at term.

A few recent studies have attempted to comment on

differences in visual outcomes in children with different

patterns of brain injury.56–60 Cioni et al58 evaluated

patients with cortical visual impairment with Teller

acuity cards and MRI studies. They evaluated 42 infants

with injury primarily to the optic radiations and 19 with

visual cortex damage. Although there was significant

variation within each study group, they concluded that

damage to the optic radiations as shown on MRI studies

was a better predictor of poor visual function than injury

to the visual cortex. However, the patients were only

evaluated once in early infancy and no attempt was

made to establish whether visual improvement occurred

over time. Eken et al60 studied 65 at-risk infants with

Teller acuity cards and MRI or CT scans. They concluded

that poor visual function was correlated with either

extensive periventricular white matter damage or striate

cortex infarcts. They did not indicate whether one pattern

of insult or the other was associated with a poorer visual

outcome. No follow-up data were provided. Mercuri

et al150 conducted a short-term study of 31 term infants

who had suffered a hypoxic insult. A total of 20 infants

had poor visual function as measured by Teller acuity

cards and all of these had damage to the visual cortex

on MRI studies. The poorest visual function was

measured in infants with injuries to both the visual

cortex and the basal ganglia. It is unfortunate that they

did not compare these findings to a comparable study

group of preterm infants.

At the University of California San Francisco, a group

of us in the departments of Neurology, Neuroradiology,

and Ophthalmology have been interested in the

questions surrounding visual impairment and the

possibility of visual recovery in children with neurologic

damage. We have undertaken, therefore, a retrospective

review of children seen with a diagnosis of cortical visual

impairment seen in our Paediatric Ophthalmology unit.

The review included the records of all patients seen

between 1979 and 1994. We reviewed approximately 7200

records.

At the time of the child’s initial appointment, a

diagnosis of cortical visual impairment was made if there

was (1) visual loss in the absence of signs of anterior

visual pathway disease or (2) vision loss exceeding that,

which was expected given the findings of the ocular

examination. Patients with cortical visual impairment

and coexisting retinopathy of prematurity affecting

macular function were excluded from this study.

Children with nystagmus underwent

electroretinographic testing (ERG) and we carefully

excluded all children whose poor visual function could

be attributed entirely to noncentral nervous system

deficits. All patients underwent at least one MRI or CT

study.

Review of the patient records revealed 170 cases of

cortical visual impairment, 2.4% of the total number of

patients seen during the study. Although our Paediatric

Ophthalmology unit has a specific interest in

neuro-ophthalmology, this figure reemphasizes that

cortical visual impairment is a major cause of visual

disability in children. We were interested in those

children with cortical visual impairment who were seen

on more than one occasion. A total of 96 patients were

identified to have been examined by us two or more

times. The average length of follow-up for this group was

5.9 years with a range of 9 months to 15 years. We

identified several major causes of cortical visual

impairment in these children. The most common

aetiology was perinatal hypoxia (22.4%). Cerebral

vascular accidents accounted for 14% and meningitis/

encephalitis for 12.4%. Next in frequency were acquired

hypoxia (10%), hydrocephalus (9.4%), and prematurity

(7.7%). Less frequent aetiologies included intracranial

cyst (5.3%), head trauma (4.1%), seizures (4.1%), and

brain tumours (2.9%). In utero drug exposure accounted

for 1.8% of cases. In 9.4% of cases we were unable to

establish the aetiology.

For the purpose of this study, we determined whether

the major damage in each child was primarily in the

visual cortex or the periventricular white matter based on

CT or MRI studies. Of the 96 children who had been

examined on more than one occasion, 41 were found to

have primary striate cortex damage. In 26 patients, the

damage was primarily to the periventricular white

matter without significant striate cortex damage.

The remaining 29 patients either had (1) extensive

diffuse brain injuries, (2) significant damage to

both the optic radiations and striate cortex, or (3) normal

MRI or CT studies. We excluded these 29 patients from

the study.

Although some of the patients had undergone visually

evoked potential studies (VEPs), we wished to assess

each patient with a functional evaluation of their vision.

For this study, we devised a functional evaluation of

vision with the following six levels of visual function

� Level I was if the child could only perceive light at the

time of the examination.

� Level II was if the patient could occasionally visually

fixate on large objects, faces, or movement in the

environment.

� Level III was if visual function was highly variable,

but with at least some moments of good visual fixation

as indicated by: (1) the ability to see small objects

(such as coins or stickers) or (2) could reliably visually

fixate a face.
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� Level IV was if a patient could reliably fixate on small

targets and/or with visual acuity that could be

measured in the range of 6/36–6/60.

� Level V was if there was good reliable fixation and/or

with visual acuity (measured under binocular viewing

conditions) of 6/18–6/36.

� Level VI was if there was a completely normal sensory

visual examination.

The initial levels of vision for the two groups (group 1

with striate cortex injury and group 2 with

periventricular white matter damage) are shown in

Table 1. For group 1 (striate cortex injury), 22.2% were at

level I, 48.7% at level II, 19.4% at level III, 7.3% at level IV,

and 2.4% at level V. None were at level VI. For group 2

(periventricular white matter damage), 38.4% were at

level I, 50% at level II, 7.6% at level III, and 3.8% at level

IV. None were at level V or VI. While it is true that

patients with periventricular leukomalacia were more

likely to be at level I (38.4%) than those with striate cortex

damage (22.2%), the overall distribution of initial acuity

levels of the two groups was remarkably similar. This is

in contrast to the finding of Cioni et al58 who found that

infants with periventricular white matter injury

involving the optic radiations were more likely to present

with poorer visual function than those who suffered an

injury to the striate cortex. This difference may be

because the patients in our study had been referred to

our clinic as they appeared to have poor vision, whereas

Cioni et al screened a group of brain-injury infants

independent of whether they had poor visual function.

We were then interested in whether or not these two

groups of children revealed any improvement on

subsequent examinations. The change in visual function

was based on the level of visual function on the last

examination compared to the level of the initial

examination. The changes in levels of visual function of

these two groups of children are shown in Table 2. In

group 1 (striate cortex injury), 21.9% showed no

improvement, 43.9% improved one level, 26.8%

improved two levels, 4.8% improved three levels, and

2.4% improved four levels. No child improved five

levels. In group 2 (periventricular white matter injury),

57.6% showed no improvement, 30.7% improved one

level, 7.6% improved two levels, and 3.8% improved

three levels. None of these children improved four or five

levels. Thus, 78% of children with striate cortex damage

showed at least one level of visual improvement,

whereas only 42% of those with periventricular white

matter injury showed at least one level of visual

improvement. Moreover, in the children with striate

cortex damage (group 1), 34% improved more than one

level. In the children with periventricular white matter

injury (group 2), only 11% improved more than one level.

We admit that this is not an ideal study. It was not

prospective and patients did not all enter at the same age

or return for the same number of follow-up visits.

Nevertheless, it is a relatively large group of children

with cortical visual impairment and, in general, they

Table 1 Initial level of visual function for the study group

Initial
vision
(levels)

Description of visual function Patients with striate
cortex damage

Patients with periventricular
white matter damage

1 Light perception only 9 (22.2%) 10 (38.4%)
2 Occasional fixation on large objects 20 (48.7%) 13 (50%)
3 Occasional fixation on small objects 8 (19.4%) 2 (7.6%)
4 Reliable fixation on small objects 6/36–6/60 3 (7.3%) 1 (3.8%)
5 Reliable visual acuity 6/18–6/36 1 (2.4%) 0
6 Completely normal vision 0 0

Table 2 Changes in vision from initial until the last examina-
tion

Vision change Patients with
striate cortex

damage

Patients with
periventricular white

matter damage

No improvement 9 (21.9%) 15 (57.6%)
Improved by one level 18 (43.9%) 8 (30.7%)
Improved by two levels 11 (26.8%) 2 (7.6%)
Improved by three levels 2 (4.8%) 1 (3.8%)
Improved by four levels 1 (2.4%) 0
Improved by five levels 0 0

Table 3 Associated ocular abnormalities

Associated ocular abnormalities Patients with
striate cortex

damage

Patients with
periventricular

white matter damage

Strabismus 5 (12.1%) 14 (53.8%)
Ocular motor apraxia/or
gaze palsy

8 (19.5%) 3 (8.4%)

Nystagmus 2 (4.8%) 13 (50%)
Optic atrophy 6 (14.5%) 10 (38.4%)
Retinal disease excluding ROP 0 1 (3.8%)
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were followed for a long period of time (average 5.9

years). The results of this study would seem to suggest

that the visual function of children with periventricular

leukomalacia may be slightly worse than those with

striate cortex on the initial examination. However, the

two groups are strikingly different when assessed over

the long term. Children with striate cortex damage will

usually show some improvement in visual function and

in some cases, it is dramatic. Children with

periventricular leukomalacia are much less likely to

improve and if they do so, it is unlikely to be more than

one level on our functional scale.

We also made note of coexisting ocular deficits that

might be important in establishing the visual prognosis

or understanding the nature of the visual loss in these

patients. These findings are summarized in Table 3.

Strabismus and nystagmus has generally been

considered to be uncommon in children with cortical

visual impairment.49,50 This rule holds reasonably well

for children with striate cortex injuriesFonly 12.1% had

strabismus and 4.8% had nystagmus. However, the rule

does not hold for children with periventricular

leukomalaciaF58.3% had strabismus and 50% had

nystagmus. These differences should be of interest to

those studying the possible neurologic substrates of

infantile strabismus and nystagmus. In both groups,

there is the confounding problem of either ocular motor

apraxia or saccadic palsy in a small percentage of

patientsF19.5% of children with striate cortex injury

and 8.4% of patients with periventricular leukomalacia.

As a result of the poor saccadic eye movements seen

in these children, early visual function assessment based

on either ‘fixation and following’ eye movements or

Teller acuity cards may overestimate the extent of

damage to neural sensory systems. Optic atrophy,

usually mild, may be seen in either groupF14.5%

of those with striate cortex damage and 38.4% of those

with periventricular white matter damage. Optic

atrophy has been noted in other studies of cortical

visual impairment in children.54,57,151,152 Whether this

results from trans-synaptic degeneration of optic

axons as a result of bilateral damage to the striate cortex

and/or optic radiations, as some others have

suggested,57,151 will be discussed in the next section. In

any case, when present, optic atrophy obviously adds to

the visual disability of the child with cortical visual

impairment.

Recall that Holmes insisted that injury to the visual

cortex in adults resulted in a permanent scotoma. If this

is so, why do some children with cortical visual

impairment improve over time? Moreover, why is it that

those with striate cortex damage are more likely to

improve than those with optic radiation lesions? These

questions led us back to the investigations of visual

recovery after striate cortex damage and the investigators

who have followed Holmes.

Mechanisms of visual recovery in children with cortical

visual impairment

There are several possible reasons as to why infants with

some forms of cortical visual impairment seem to

improve over time. One reason may be simply that the

normal maturation of visual systems that occurs in

normal infants allows residual visual potential in these

brain-damaged children to become apparent over

time.153,154 Another is that the damage to the visual cortex

and/or optic radiations is usually incomplete in these

children. Thus, residual visual function can be attributed

to the residual intact functioning visual cortex and

radiations.50 Yet, most investigators who study these

children seem to believe that some unique mechanism of

plasticity of the brain in infants is an important factor in

the apparent visual recovery that occurs in many of these

children.51,54,55,62 In order to understand what

mechanisms may account for this apparent plasticity of

infant visual brain, it is important to detail both our

current understanding of adult recovery mechanisms

involved in visual cortex injuries and the recent animal

models that have specifically addressed infant visual

cortex ablation.

Holmes was not the only physician to study visual

fields of injured soldiers in the First World War. In 1917,

George Riddoch,155 a Captain in the Royal Army Medical

Corps, described 10 patients with occipital cortex injuries

who were able to perceive motion within their

scotomas.155 This led Riddoch to believe that ‘movement

may be recognized as a special visual perception

separate and in addition to other perceptions’. Riddoch’s

findings were immediately challenged by Holmes.42

Nevertheless, other investigators subsequently verified

Riddoch’s observations.156,157 Although the mechanism

of Riddoch’s phenomenon is not established, it has

been attributed to either preserved islands of

visual function within the striate cortex158 or extrastriate

systems bypassing the injured visual cortex.157,159

The latter explanation seems to have recently gained

support from experimental findings. In any case,

although the Riddoch phenomenon is of interest, it has

never been suggested that it accounts for significant

useable visual function following visual cortex injury in

adults.
In the 1970s, studies by several different investigators

began to suggest that cortically blind adults can ‘see’

considerably more than motion in their blind fields.44–

47,160–162 The term ‘blindsight’ was introduced to describe

this phenomenon.45,46 The term implies that the

preserved visual function occurs below the level of visual
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awareness in these patients.163 The original studies were

criticized by some authorities who felt that the residual

visual function reported in these adult patients with

striate cortex injuries could be accounted for by residual

islands of functioning cortex and/or light scatter during

the experiments.159,164 However, control experiments

involving blind spot stimulation165 as well as improved

fixation controls have made these explanations less likely

to be valid.45 Moreover, functional imaging studies of

some of these patients have failed to reveal residual

striate cortex activity.166–168 It would appear, therefore,

that in a small number of trained adults with visual

cortex injury, preservation of the ability to detect

stimulus presence,169 target displacement,170 direction of

motion,171 orientation,165 or object discrimination44 can be

demonstrated. Studies in monkeys and humans have

demonstrated that ‘blindsight’ exhibits a learning effect

with increased accuracy as the result of extensive

training.172 It is unclear whether ‘blindsight’ can be used

for visual rehabilitation of visual cortex-injured adult

patients.172–176

Both Munk19 and Schäfer25 reported that adult

monkeys and dogs showed some residual function

following ablations of the visual cortex. In general, they

found that more visual function was apparent in dogs

than monkeys. This species-specific response to visual

cortex injury is important when we review the

experimental literature now available on visual cortex

ablation studies. During the last two decades,

investigators have detailed visual cortex injuries in adult

and infant animals and the difference in their visual

recovery.177–182 There is virtually unanimous agreement

that visual recovery in infant animals with visual cortex

ablation is significantly more extensive and complex than

that occurs in adult animals.

In cats, there are pronounced functional and

anatomical differences between animals that experienced

visual cortex ablation as neonates and those that undergo

this as adults. Neonatal lesions of the primary visual

cortex in cats lead to significant changes in the

organization of visual pathways including severe

retrograde degeneration of retinal ganglion cells.183 If

kittens undergo visual cortex ablation (up to the age of 2

weeks), there will be a 78% loss of retinal ganglion cells

of the x/beta class, whereas visual cortex ablation in

adult cat results in only a 22% loss of x/beta cells.183,184 It

is interesting to note that if one eye is enucleated in the

neonatal cat at the time of visual cortex ablation, the

remaining eye does not suffer a loss of ganglion cells of

the x/beta class and the ganglion cells retain the

response properties of striate neurons.185

At the cortex level, most of the adaptive changes seem

to take place in the posteromedial lateral suprasylvian

(PMLS) cortex. Anatomical studies with both

anterograde and retrograde tracing methods reveal an

increased projection from the retina through the

thalamus to the posteromedial lateral suprasylvian

extrastriate visual areas of cortex in the damaged

hemisphere of cats with a neonatal visual cortex

ablation.178–181,186 No such enhanced projections are seen

in cats who undergo visual cortex ablation as adults.

Single-cell neurophysiological studies indicate that

physiological compensation is present in the

posteromedial lateral suprasylvian cortex and these cells

developed normal receptive field properties.187,188

However, these cells in the posteromedial lateral

suprasylvian cortex do not acquire the response

properties of the striate neurons that were damaged

(high spatial frequency tuning and low contrast

threshold).187,188 Nevertheless, the data in experimental

animals seem clear. An incomplete, but nonetheless

impressive, compensation takes place primarily

in the posteromedial lateral suprasylvian cortex of cats

that undergo visual cortex ablation as neonates. No

comparable compensation occurs in animals

that undergo ablation as adults. Whether other areas

of the cortex are also important in the visual recovery

of infant cats with visual cortex ablation remains

unclear.

Regrettably, less investigation of primate responses

to visual cortical ablation has been completed.

Moore et al189 studied monkeys with large unilateral

surgical ablations of striate cortex, sustained either in

adulthood or at 5–6 weeks of age.189 They then trained

the animals on ocular motor and localization tasks. They

tested the ‘blind’ field of these monkeys 2–5 years after

the ablation had been performed. Monkeys with lesions

sustained in adulthood were largely unable to detect

stimuli in the ‘blind’ field. Monkeys with lesions of

striate cortex made in infancy, however, showed residual

detection capacity in the ‘blind’ field at the beginning of

testing and improved dramatically during repeated

testing. In a subsequent experiment, these same

investigators showed that Macaque monkeys who

undergo neonatal visual cortex ablation can also detect

the direction of a moving target in the ‘blind’ field.190

Almost nothing is known about the underlying

neuroanatomical substrates responsible for recovery

from visual cortex damage in adult or neonatal

experimental primates. Rodman et al191 did demonstrate

in adult Macaques that after ablation of the visual cortex,

neurons in the area MT of the peristriate cortex still

respond appropriately albeit less robustly and they retain

direction selectivity. This would suggest that at least

motion detection can be processed without striate cortex

via pathways of the extrageniculostriate system from the

thalamus directly to area MT.191 Whether this explains

the Riddoch phenomenon in man is yet to be determined.
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The compensatory nature of the posteromedial lateral

suprasylvian cortex has been conclusively demonstrated

in cats but the possibility that it plays a similar

compensatory role in primates who undergo comparable

neonatal visual cortex damage has recently been

challenged.192,193

Obviously, further investigations of the systems that

are responsible for the superior recovery of infant

primates with visual cortex injury will be extremely

important in understanding the mechanisms that may be

responsible for the visual ‘recovery’ in some children

with cortical visual impairment. Nevertheless, a few

conclusions can be drawn from the studies that have

been thus far completed: (1) Infant animals show a much

more extensive ‘recovery’ from visual cortex injury than

adults do. This is true in all species studied. (2) If the

mechanisms of recovery in human infants were similar to

those of cats (a very big assumption), one would expect

babies with striate cortex damage to have a better

recovery than those with optic radiation damage since

the retino-thalamic projections to the suprasylvian cortex

would be damaged along with the optic radiation injury.

Whether coexisting corpus callosal thinning in

periventricular leukomalacia might also adversely affect

visual outcome is less clear.194,195 (3) In all studies, a

considerable recovery period is necessary before the

extent of visual recovery from visual cortex ablation is

seen. In most experiments, training seems to benefit both

adults and infantsFat least in cats.196 Training also

seems to be beneficial to infant monkeys but it has not

been shown to be effective for adult monkeys who

experience visual cortex injury. (4) If the cat model of

recovery applied directly to human infants, 100% of

children who suffer significant striate cortex damage at

birth should have easily detected optic atrophy. The fact

that this is not the case should temper our enthusiasm for

accepting all details of the current animal models of

recovery from visual cortex ablation and applying them

directly to the clinical situation of the child with cortical

visual impairment.
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