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Summary Miltefosine (hexadecylphosphocholine) is used for topical treatment of breast cancers. It has been shown previously that a 
high percentage of breast carcinomas express MDR1 or MRP. We investigated the sensitivity of MDR1-expressing cells to treatment with
miltefosine. We show that cells overexpressing MDR1 (NCI/ADR-RES, KB-8-5, KB-C1, CCRF/VCR1000, CCRF/ADR5000) were less
sensitive to miltefosine treatment when compared to the sensitive parental cell lines. HeLa cells transfected with MDR1 exhibited resistance
to the compound, indicating that expression of this gene is sufficient to reduce the sensitivity to miltefosine. The resistance of MDR1-
expressing cells to miltefosine was less pronounced than that to adriamycin or vinblastine. Expression of MDR2 did not correlate with the
resistance to miltefosine. As shown by a fluorescence quenching assay using MIANS-labelled P-glycoprotein (PGP), miltefosine bound to
PGP with a Kd of approximately 7 µM and inhibited PGP-ATPase activity with an IC50 of approximately 35 µM. Verapamil was not able to
reverse the resistance to miltefosine. Concentrations of miltefosine up to approximately 60 µM stimulated, whereas higher concentrations
inhibited the transport of [3H]-colchicine with an IC50 of approximately 297 µM. Binding studies indicated that miltefosine seems to interact with
the transmembrane domain and not the cytosolic nucleotide-binding domain of PGP. These data indicate that expression of MDR1 may
reduce the response to miltefosine in patients and that this compound interacts with PGP in a manner different from a number of other
substrates. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Phospholipid analogues are a new class of drugs, which exhibit
broad antineoplastic activity (Berdel, 1991; Brachwitz and
Vollgraf, 1995). Miltefosine represents the first of these
compounds used in the clinic (Berdel, 1991; Brachwitz and
Vollgraf, 1995). It is approved in several countries for the topical
treatment of skin metastases resulting from breast cancers (Hilgard
et al, 1993). The exact mechanism of action responsible for the
antitumour activity of miltefosine is not yet known (Berdel, 1991;
Hilgard et al, 1993; Brachwitz and Vollgraf, 1995). 

A major problem in the treatment of tumours with antitumour
agents is the existence of tumour cell populations with intrinsic or
acquired resistance (Goldie and Coldman, 1984). For the clinical
use of miltefosine, the following questions are important: (i) why
are tumour cells refractory to the compound, and (ii) are tumours,
that are resistant to antitumor agents used in the treatment of breast
cancer also cross-resistant to miltefosine? 

Resistance to a spectrum of antitumour drugs is frequently asso-
ciated with the expression of MDR1, MRP1, BCRP or LRP genes
belonging to the ATP-binding cassette superfamily of membrane
transport proteins (Gottesman and Pastan, 1993; Scheffer et al,
1995; Lautier et al, 1996; Doyle et al, 1998). Approximately 40 to
50% of primary breast carcinomas express MDR1 (Trock et al,
1997). Recently, we have shown that MDR1-expressing cells are
cross-resistant to the phospholipid analogue ilmofosine (Hofmann
et al, 1997). In view of the relevance of miltefosine for treatment
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of cancers, we investigated the association of MDR1-mediated
resistance and the low sensitivity of tumour cells to miltefosine. 

MATERIALS AND METHODS 

Drugs 

Miltefosine was from ASTA Medica (Frankfurt, Germany). A
10 mM stock solution in 20 mM Tris-HCl (pH 7.4) was used for
further dilutions. Vinblastine and adriamycin were from Sigma,
Munich, Germany. The MTT-assay kit was obtained from
Boehringer-Mannheim, Mannheim, Germany. [3H]-colchicine
(15–25 Ci mmol) was purchased from DuPont NEN (Boston, MA,
USA), and MIANS was obtained from Molecular Probes (Eugene,
OR, USA). 

Tissue culture 

CCRF-CEM (human lymphoblastoid cells), the multidrug
resistant sublines CCRF/VCR1000, CCRF/ADR5000 (Kimmig et
al, 1990), HeLa (human epitheloid cervix carcinoma) and 2 multi-
drug resistant sublines (HeLa-MDR1-G185, HeLa-MDR1-V185)
were grown in RPMI 1640 medium. MCF7 (human breast adeno-
carcinoma) cells, the multidrug resistant line NCI/ADR-RES, KB-
3-1 cells (human oral epidermoid carcinoma), and the multidrug
resistant sublines KB-8-5 and KB-C1 (Akiyama et al, 1985), were
grown in Dulbecco’s modified Eagle’s medium (4.5 g glucose–1).
The NCI/ADR-RES cell line was distributed by the NCI and was
believed to be a MCF7-derived resistant subline. However,
recently it has been revealed that it is not derived from MCF7.
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Multidrug resistant CHRB30 Chinese hamster ovary cells (Ling
and Thompson, 1974) were grown in α-minimal essential
medium. The medium was supplemented with 10% fetal calf
serum, 2 mM glutamine and 50 µg ml–1 gentamycin. Multidrug-
resistant stock cultures were grown in presence of the following
drugs (except at the time of experiments): NCI/ADR-RES: 10 µg
adriamycin ml–1; CCRF/VCR1000: 1 µg vincristine sulphate ml–1;
CCRF/ADR5000: 5 µg adriamycin ml–1; HeLa-MDR1-G185:
100 nM vinblastine; HeLa-MDR1-V185: 240 ng colchicine ml–1;
KB-8-5: 10 ng colchicine ml–1; KB-C1: 1 µg colchicine ml–1;
CHRB30:30 µg colchicine ml–1. 

The two multidrug-resistant MDR1-overexpressing HeLa cell
lines were obtained by transfection of human HeLa S3 (HeLa-
WT) cervix carcinoma cells with a MDR1 wild-type gene
construct (HeLa-MDR1-G185) and with a mutation in codon 185
(Gly-Val, kindly provided by Dr M M Gottesman, HeLa-MDR1-
V185), respectively (Kane et al, 1989). Following transfection,
HeLa-MDR1-G185 cells were grown in the presence of vinblas-
tine (100 nM) and HeLa-MDR1-V185 in the presence of colchi-
cine (240 ng ml–1). One clone of each cell line was taken for
further cultivation. MDR1-mRNA expression was controlled by
reverse transcriptase PCR (Hofmann et al, 1997). Wild-type and
mutant genes were controlled by sequencing (Spitaler et al, 1998). 

Dose–response curves for calculations of the IC50 values (Table
1) were obtained by plating the cells in 96-well plates. Following
an incubation period of 4 hours, the drugs were added and the cells
were exposed to the drugs continuously for 72 hours.
Subsequently, cell proliferation was detected by the MTT assay
(Mosman, 1983). The IC50 values were calculated using CalcuSyn
software from Biosoft, Cambridge, UK. 

Detection of MDR1 and MDR2 mRNA levels 

For detection of the mRNA levels, total RNA was isolated using
RNAzol (Biotexs Laboratories Inc, Houston, TX, USA). Synthesis
of cDNA and amplification of the MDR1-mRNA by polymerase
chain reaction was performed as described (Noonan et al, 1990).
Primers for the amplification of the MDR2-mRNA were:
2061–2083 (5′-TGT CAG AAG AGC CTT GAT GTG G-3′) and
2193–2215 (5′-TGG CAA TGG CAC ATA CTG TTC C-3′). β-
Microglobulin was used to control the correct amount of RNA in
the experiments (Noonan et al, 1990). Amplifications (30 cycles)
were performed with a denaturation temperature of 94˚C (35
seconds), an annealing temperature of 57˚C (30 seconds), and an
extension temperature of 73˚C (1 minute). Starting with cycle 16,
the time for synthesis was extended (5 seconds per cycle). The
reaction products were separated on a 10% polyacrylamide gel and
stained with ethidium bromide. 

MIANS-PGP quenching assay 

Binding of miltefosine to P-glycoprotein (PGP) was carried out
using fluorescence quenching, as described previously for drugs,
chemosensitizers and hydrophobic peptides (Liu and Sharom,
1996; Sharom et al, 1998a, 1998b). Highly purified PGP, labelled
with MIANS (Liu and Sharom, 1996) was titrated with miltefosine
and quenching of the fluorescence emission at 420 nm was moni-
tored. The dissociation constant Kd for binding was estimated by
fitting the data to an equation describing interaction with a single
class of binding site. 
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PGP ATPase activity 

The ATPase activity of P-glycoprotein in CHRB30 plasma
membrane was measured as described previously (Doige et al,
1992) by detection of the release of inorganic phosphate from ATP,
using a colorimetric method. Membrane vesicles (1–2 µg of
protein) in buffer containing 2 mM ATP and 5 mM Mg2+ were pre-
incubated with miltefosine for 5 minutes before initiation of the
assay by addition of ATP. 

PGP-mediated [3H]-colchicine transport 

ATP-dependent uptake of [3H]-colchicine into CHRB30 plasma
membrane vesicles was determined by rapid filtration as outlined
earlier (Sharom et al, 1996), in the presence of increasing concen-
trations of miltefosine. Colchicine uptake was calculated as
percent relative to a control in the absence of drug. 

RESULTS 

Effects of miltefosine on MDR1-expressing cells 

It has been demonstrated that the resistant sublines shown in Table
1 overexpress MDR1 (Figure 1; Akiyama et al, 1985; Kimmig et
al, 1990; Hofmann et al, 1997). The resistance of the cell lines
employed in this study to vinblastine and adriamycin (as attested
by IC50 values and factors of resistance) is shown in Table 1. All
MDR1-expressing sublines exhibited cross-resistance to miltefo-
sine. The resistance to the compound was less pronounced than
that to vinblastine or adriamycin (Table 1). Resistance to miltefo-
sine was also observed in a cell line transfected with wild-type or
mutant PGP. This supports the notion that expression of MDR1 is
sufficient to elicit resistance to miltefosine, and that it is not due to
additional resistance mechanisms possibly induced during selec-
tion with adriamycin, vincristine or colchicine. Compared to the
degree of resistance to vinblastine or adriamycin, the KB-C1 cell
line exhibits low resistance to miltefosine (Figure 1). PGP
expressed in KB-C1 cells harbours a mutation in position 185 
(glycine to valine) (Choi et al, 1988; Safa et al, 1990). Compared
to wild-type PGP, the mutated PGP exhibited different substrate
specificity for drugs (Choi et al, 1988; Safa et al, 1990) and differ-
ences in the sensitivity to reversing agents (Cardarelli et al, 1995).
We investigated whether this mutation might influence the resis-
tance to miltefosine. In a HeLa subline transfected with mutant
PGP (HeLa-MDR1-V185) the profile of resistance to vinblastine
and adriamycin was altered. Despite slightly higher expression of
MDR1 in the HeLa-MDR1-V185 compared to the HeLa-MDR1-
G185 cell line (Figure 1), the resistance to vinblastine was
decreased (Table 1). This is in accordance with results published
previously (Choi et al, 1988; Safa et al, 1990). However, this
mutation did not alter the resistance to miltefosine significantly
(Table 1; HeLa-MDR1-G185 = 8.3-fold, HeLa-MDR1-V185 =
9.6-fold). 

MDR2-expression 

It has been reported that the MDR2-encoded PGP transports phos-
pholipids out of the cell (Smit et al, 1993; Ruetz and Gros, 1994).
Thorgeirsson et al (1991) proposed a possible mechanism for
co-induction of the MDR1 and MDR2 genes. If both genes are
co-expressed, MDR2 might be responsible for the resistance to
© 2001 Cancer Research Campaign
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Table 1 IC50 values of vinblastine, adriamycin and miltefosine. IC50 was obtained from dose–response curves to the drugs as described in 
‘Materials and Methods’. The means of at least three independent experiments, in which duplicate determinations were taken within each experiment,
are indicated. The resistance factor in brackets, indicating the resistance compared with the parental cell line, is calculated by the IC50-resistant/
IC50-sensitive ratio. MDR1-expressing cell lines and the resistance factors are printed in bold

Cell line Vinblastine (nM) Adriamycin (nM) Miltefosine (µM) 

MCF7 5.5 (± 0.6) 155.4 (± 18.6)) 34.6 (± 11.7) 
NCI/ADR-RES 116.9 (± 10.7) (21.2) 1352.8 (± 121.7) (8.70) 69.8 (± 4.5) (2.0)

KB-3-1 1.8 (± 0.2) 46.6 (± 9.3) 2.5 (± 0.3) 
KB-8-5 28.4 (± 5.2) (15.9) 390.7 (± 57.4) (8.3) 3.2 (± 0.3) (1.3)
KB-C1 66.5 (± 22.5) (37.3) 2569.5 (± 128.4) (55.1) 4.5 (± 0.3) (1.8)

HeLa-WT 7.3 (± 3.7) 231.0 (± 9.0) 6.8 (± 0.9) 
HeLa-MDR1-G185 251.0 (± 15.1) (34.3) 25650.0 (± 3190.0) (111.0) 57.0 (± 18.2) (8.3)
HeLa-MDR1-V185 91.9 (± 11.3) (12.5) 16080.0 (± 5949.6) (69.6) 65.8 (± 4.4) (9.6)

CCRF/CEM 2.0 (± 0.1) 21.6 (± 1.5) 4.9 (± 1.2) 
CCRF/VCR1000 492.0 (± 61.5) (246.0) 1459.0 (± 91.1) (67.5) 29.2 (± 2.7) (5.9)
CCRF/ADR5000 2420 (± 387.2) (1210.0) 846.0 (± 50.7) (39.1) 45.3 (± 12.7) (7.4)
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miltefosine. In order to investigate whether MDR2 might be
involved in the resistance to miltefosine, we detected the expres-
sion of the MDR2 gene. As shown in Figure 1, there was no asso-
ciation between the resistance to miltefosine and the expression of
the MDR2 gene. For example, the sensitive MCF7 and the resistant
NCI/AD-RRES cell lines express MDR2 to a similar extent. On
the other hand, neither sensitive HeLa-WT, nor the multidrug-
resistant MDR1-transfected HeLa cell lines express MDR2. Drug-
sensitive CCRF/CEM cells express low levels of MDR2, whereas
the miltefosine-resistant CCRF/ADR5000 show no MDR2-expres-
sion (Figure 1). Thus, MDR2-expression does not correspond to
the resistance to miltefosine. In contrast, there is a clear associa-
tion between the expression of MDR1 and the resistance to miltef-
osine (Table 1, Figure 1). 

Interaction of miltefosine with PGP 

In order to investigate whether miltefosine binds to PGP, we
carried out a fluorescence quenching assay using highly purified
protein isolated from CHRB30 cells. Binding of a wide variety of
substrates to PGP, including drugs, chemosensitizers, and hydro-
phobic peptides, leads to saturable fluorescence quenching of
highly purified PGP labelled with the fluorophore MIANS at two
conserved cysteine residues within the Walker A motifs of the
nucleotide-binding domains (Liu and Sharom, 1996; Sharom et al,
1998a, 1998b). The quenching curve can be used to estimate the
dissociation constant, Kd, which is a measure of the affinity of
© 2001 Cancer Research Campaign
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Figure 1 Detection of MDR1 and MDR2 mRNA levels. Isolation of RNA,
cDNA synthesis and amplification by PCR was performed as described in
Materials and Methods. β-Microglobulin was employed as a control for the
correct amount of RNA used in the experiment 
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binding (Liu and Sharom, 1996; Sharom et al, 1998a, 1998b). To
date, Kd values have been measured covering the range 250 µM to
25 nM (Sharom et al, 1998a, 1999). As shown in Figure 2, miltef-
osine bound to purified MIANS-PGP with a Kd of approximately
7 µM, indicating that the compound is a relatively high-affinity
substrate for PGP. Drugs and chemosensitizers that interact with
PGP can either stimulate or inhibit the basal ATPase activity of
PGP (Thorgeirsson et al, 1991; Doige et al, 1992; Gottesman and
Pastan, 1993; Sharom et al, 1995; Sharom, 1997). In plasma
membrane vesicles from the highly drug-resistant CHO cell line
CHRB30, miltefosine inhibited the ATPase activity with an IC50 of
35 µM (Figure 3). In addition to the data shown in Figure 2, this is
a further indication of an interaction between miltefosine and PGP.
Miltefosine was also found to bind to the Bacillus subtilis ABC
transporter YvcC with a Kd of 2–3 µM (data not shown). 

In order to investigate whether miltefosine interacts directly
with the cytosolic NBD of PGP, murine NBD2 was purified and
British Journal of Cancer (2001) 84(10), 1405–1411
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Figure 2 Quenching of MIANS-PGP by miltefosine. Increasing
concentrations of miltefosine were added to highly purified PGP labelled with
MIANS. The percent quenching of the fluorescence emission at 420 nm
(deltaF/F0) was calculated relative to MIANS-labelled PGP in the absence of
miltefosine. The quenching data (means ±range, n = 2) were fitted to an
equation describing interaction with a single binding site 
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Figure 3 Modulation of PGP-ATPase activity by miltefosine. ATPase activity
was measured in plasma membranes from MDR1-expressing CHRB30 cells
as described in Experimental Procedures. Data are presented as the
percentage of control ATPase activity in the absence of miltefosine
(means ± SEM, n = 3) 
fluorescence quenching was determined (Conseil et al, 1998). A
wide range of miltefosine concentrations (2 µM–2 mM) did not
show any significant quenching. The binding site of the antipro-
gestin RU486 is close to the ATP-binding site (Conseil et al,
1998). The Kd for RU486 in the absence of miltefosine, 17.9 ± 2.6
µM, was not markedly changed upon addition of miltefosine up to
320 µM (not shown here). This is an indication that the cytosolic
NBDs do not contain the main binding site for miltefosine. The
interaction site is therefore likely to be located within the trans-
membrane domain. The main binding site for steroids and other
PGP transport substrates has also been found to be located in the
transmembrane regions (Sharom, 1997; Vo and Gruol, 1999). 

Combination of verapamil and miltefosine 

If the resistance of MDR1-expressing cells to miltefosine is due to
PGP-mediated efflux, verapamil should block the efflux and
thereby reverse the resistance to miltefosine. Usually 5 µM verap-
amil is sufficient to reverse the resistance to antitumor drugs.
However, in multidrug-resistant HeLa cells (HeLa-MDR1-G185),
10 µM verapamil did not reverse resistance (Figure 4). Verapamil
also did not enhance the antiproliferative activity of miltefosine in
drug-sensitive HeLa-WT cells. In HeLa-MDR1-V185 harbouring
British Journal of Cancer (2001) 84(10), 1405–1411
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a mutant PGP, the combination verapamil/miltefosine is slightly
more effective than in drug-sensitive HeLa-WT and HeLa-MDR1-
G185. In HeLa-MDR1-V185 this effect is not synergistic, but is at
best additive. For comparison, the synergistic effect of vinblastine
in combination with verapamil in HeLa-MDR1-G185 cells is
shown (Figure 5). Thus, although miltefosine seems to be trans-
ported by PGP, the efflux cannot be blocked by verapamil (Figure
4). This is an indication that miltefosine seems to show anomalous
behaviour compared to other substrates. 

Modulation of the colchicine transport by miltefosine 

If miltefosine interacts directly with PGP, it should modulate the
transport of other drugs by the protein. Many PGP substrates and
chemosensitizers inhibit colchicine transport into plasma
membrane vesicles from MDR cells, or into reconstituted proteol-
iposomes containing PGP (Doige and Sharom, 1992; Sharom et al,
1993, 1995; Sharom, 1997). A good correlation has been found
between the Kd value for many drugs, chemosensitizers and
peptides (as determined by MIANS-PGP quenching), and the IC50

for inhibition of PGP-mediated [3H]colchicine uptake into
CHRB30 plasma membrane vesicles (Sharom et al, 1998a, 1998b).
Some peptides and other compounds have been found to stimulate
the transport of drugs, likely via positive allosteric effects (Sharom
et al, 1996; Shapiro and Ling, 1997; Shapiro et al, 1999).
Miltefosine at concentrations up to 60 µM led to a stimulation of
colchicine transport into CHRB30 plasma membrane vesicles
(Figure 6). The observed activation in the range of 27% was highly
reproducible in each experiment. This activation of colchicine
transport can be explained by a positive allosteric interaction
between two distinct, but possibly overlapping, substrate-binding
sites for miltefosine and colchicine. Much higher concentrations
of miltefosine led to inhibition of colchicine transport, with an IC50

of approximately 300 µM. The inhibition of transport at high
concentrations of miltefosine is probably due to non-specific
detergent-like effects, as were observed previously for certain
membrane-active peptides (Sharom et al, 1995). 

DISCUSSION 

We have investigated the susceptibility of human tumour cell lines
to treatment with the phospholipid analogue miltefosine. We found
that the expression of MDR1 elicits resistance to this compound,
although it was less pronounced than that to adriamycin or
vinblastine. In view of the fact that breast cancers frequently
© 2001 Cancer Research Campaign
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Figure 5 Combination of verapamil and vinblastine. HeLa-MDR1-G185
cells were grown in the presence of verapamil, vinblastine or a combination
of both for 72 hours. The means of two independent experiments (± SD), in
which 4 determinations were taken within each experiment, are indicated 
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Figure 6 Modulation of colchicine transport by miltefosine. Equilibrium
uptake of [3H]-colchicine into plasma membrane vesicles of MDR1-
expressing CHRB30 cells was measured at 22˚C in the presence of 1 mM
ATP and an ATP-regenerating system. Data represent the percent of control
(in absence of miltefosine). The means of 3 different experiments (± SEM)
are indicated 
express MDR1 (Trock et al, 1997), the observed resistance may
suffice to reduce the efficacy of miltefosine, or to cause treatment
failures. Breast cancers are, among others, treated with drugs
transported by PGP, such as adriamycin, vinblastine, vincristine,
etoposide or taxol. Our results show that tumours resistant to these
compounds, due to the expression of MDR1, also exhibit reduced
sensitivity to miltefosine. Cross-resistance of multidrug-resistant
cells to miltefosine was observed previously, when multidrug
resistance was induced with adriamycin, but not with colchicine
© 2001 Cancer Research Campaign
(Himmelmann et al, 1990). Our results are in agreement with these
data. The resistance to miltefosine of KB-8-5 and KB-C1 cells in
which the resistance was induced by colchicine is very modest
(Table 1). Resistance to miltefosine is more pronounced in adriam-
ycin-induced cells (NCI/ADR-RES, CCRF/ADR5000) compared
to the level of resistance to adriamycin. It is conceivable that cross-
resistance to miltefosine may develop not only via induction of
MDR1 expression by adriamycin, but also by other mechanisms.
However, we show here that two HeLa cell lines in which the
resistance was obtained by transfection with MDR1 also exhibited
resistance to miltefosine (Table 1). These results demonstrate that
expression of MDR1 is sufficient to elicit resistance to the
compound. A mutation at position 185 that alters the substrate
specificity for several compounds does not influence the miltefo-
sine resistance significantly. 

One possible explanation for the cross-resistance of multidrug-
resistant cells to miltefosine would be that the compound is trans-
ported by PGP. This assumption is confirmed here by the fact that
the expression of MDR1 correlates with the resistance to miltefo-
sine. mRNA levels of MDR2 are not related to the miltefosine
resistance. One approach to investigate whether a particular
compound is a substrate of PGP is the determination of the
quenching of the PGP-bound fluorescence probe MIANS (Liu and
Sharom, 1996; Sharom et al, 1998a, 1998b). Using this assay,
interaction of miltefosine was observed with PGP with a Kd value
of approximately 7 µM (Figure 2). Interaction with comparable
affinity was observed with the bacterial ABC transporter YvcC. As
indicated by experiments with NBD2 of murine PGP, miltefosine
does not interact with the cytosolic ATP-binding site. A likely
binding site may therefore be a drug/modulator-binding site within
the transmembrane domain. Miltefosine also inhibited the ATPase
activity of PGP (Figure 3). These data illustrate that miltefosine
does interact with PGP and the resistance to miltefosine seems to
be due to efflux of the compound. Abulrob and Gumbletan (1999)
reported that in MDR2-negative KB and MCF cells in which the
expression of MDR1 was induced, the intracellular accumulation
of a fluorescently-labelled phosphatidylcholine analogue was
reduced as compared to the sensitive cells. These data confirm that
the MDR1-encoded PGP is able to transport phospholipids. This
proposal is supported by the recent report from one of our labora-
tories that PGP reconstituted into proteoliposomes acts as a flip-
pase for a number of fluorescent phospholipids (Romsicki and
Sharom, 2001). 

As shown in Figure 4, the multidrug resistance modulator
verapamil was not able to reverse the resistance to miltefosine.
Recently, it has been shown that cells selected for resistance by the
addition of miltefosine also express MDR1, indicating a connec-
tion between PGP and resistance to miltefosine. This resistance
also could not be reversed by verapamil (Fu et al, 1999), which
indicates that miltefosine does not interact with the verapamil-
binding site. In agreement with this hypothesis is the observation
that miltefosine increased the transport of [3H]-colchicine (Figure
6). Most PGP substrates show a good correlation between the Kd

value and the IC50 for inhibition of the ATP-dependent [3H]-colchi-
cine uptake. Miltefosine exhibits unusual behaviour in that it acti-
vates transport at concentrations up to 60 µM. Although higher
concentrations inhibit the colchicine uptake, such high concentra-
tions of miltefosine may lead to detergent-like effects as observed
previously for membrane-active peptides (Sharom et al, 1993). An
explanation for these unusual results might be that miltefosine
does not interact, as do many other substrates, with a site of PGP
British Journal of Cancer (2001) 84(10), 1405–1411
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that leads to transport inhibition, but rather with a site that leads to
allosteric activation of drug transport. To date, over 60 PGP
substrates and modulators have been found to inhibit colchicine
transport into membrane vesicles (Sharom et al, 1999). A few
compounds have been found to stimulate colchicine transport (Lu
and Sharom, unpublished data). Results similar to those with
miltefosine were obtained with the synthetic peptide NAc-LLY-
amide which is a substrate of PGP, but activates colchicine trans-
port (Sharom et al, 1998b). NAc-LLY-amide also did not compete
with azidopine photolabelling. More recently, Shapiro and co-
workers have shown that transport of the fluorescent PGP
substrates rhodamine 123 and Hoechst 3342 in CHRB30 plasma
membrane vesicles was stimulated by several other compounds in
a positive allosteric fashion (Shapiro and Ling, 1997; Shapiro et al,
1999). 

MDR1-expressing cells have also been shown to be resistant to
the phospholipid analogue ilmofosine. This compound slightly
increased the photolabelling of PGP by azidopine (Hofmann et al,
1997). This illustrates that ilmofosine, like miltefosine, increases
the interactions of PGP with certain substrates. From the facts that
i) ilmofosine enhanced azidopine photolabelling (Hofmann et al,
1997), ii) the PGP-modulator dexniguldipine-HC1 did not reverse
the resistance to ilmofosine (Hofmann et al, 1997), iii) verapamil
did not reverse the resistance to miltefosine (Fu et al, 1999), and
iv) cells resistant to miltefosine, in addition to MDR1, also
expressed elevated levels of bcl-2, it was concluded that the phos-
pholipid analogues ilmofosine (Hofmann et al, 1997) and miltefo-
sine (Fu et al, 1999) are not substrates of PGP. However, these
conclusions were not based on direct experiments designed to
answer this question. The results obtained by the experiments
shown contradict these conclusions, and show direct interaction of
miltefosine with PGP. 
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